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Summary

The present work investigates the capacities of adaptive methods for word
prediction, which represents a central strategy in the context of alternative
and augmentative communication (AAC) for speech- and motion-impaired
persons. First an introduction to the respective research fields of AAC and
word prediction is given. Here we address in particular stochastic language
models, which have been shown to be very appropriate for the task of predic-
tion. We then explore two major classes of adaptive methods: In a first part we
consider strategies enabling to adapt to the lexical and syntactic preferences
of the user of an AAC system. Here we investigate the recency promotion
or cache model, an auto-adaptive user lexicon and the dynamic user model
(DUM), which integrates every input of the user.

The second class of methods aims to adapt to the semantic or topical con-
text. Here we focus in particular on Latent Semantic Analysis (LSA), a vectorial
model establishing semantic similarity from distributional properties of lexical
units in large corpora. A difficult aspect however arises from the integration
of LSA-based information to the general prediction model; for this reason we
discuss and evaluate here several integration methods.

In the last part of this work an assistive communication system is presented
that implements the most successful of the previously investigated adaptation
methods. After a description of the user interface as well as the communi-
cation enhancing components we report results from the application of this
system in a rehabilitation center, where it has been in use for several years.
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Zusammenfassung

Die vorliegende Arbeit untersucht die Kapazitäten adaptiver Methoden für
die Wortprädiktion, einer zentralen Strategie im Kontext der unterstützenden
Kommunikation (UK) für sprach- und bewegungsbehinderte Menschen.
Zunächst wird eine allgemeine Einführung in die Forschungsgebiete der UK
einerseits und der Wortprädiktion andererseits gegeben. Dabei wird insbeson-
dere Bezug genommen auf stochastische Sprachmodelle, welche sich für die
Prädiktion als sehr geeignet erwiesen haben. Die Untersuchung adaptiver
Methoden erfolgt daraufhin entlang zweier Achsen: In einem ersten Abschnitt
werden die Verfahren betrachtet, welche die Adaption an die spezifische Lexik
und Syntax des Benutzers eines UK-Systems erlauben. Dabei werden ins-
besondere das sogenannte Cache-Modell, ein selbstlernendes Benutzerlexikon
sowie das dynamische Benutzermodell (dynamic user model, DUM) diskutiert.

Auf der zweiten Achse werden nun Modelle untersucht, welche auf
eine Adaption der Wortprädiktion an den semantischen bzw. topikali-
schen Kontext abzielen. Hier rückt vor allem eine Methode in den Mit-
telpunkt: die Latent-Semantische Analyse (LSA), ein vektorraumbasiertes
Verfahren, welches semantische Ähnlichkeit durch distributionelle Eigen-
schaften lexikalischer Einheiten etabliert. Als schwierig erweist sich jedoch
die Integration der LSA-basierten semantischen Information in das allgemeine
Prädiktionsmodell, weshalb hier verschiedene Integrationsmöglichkeiten un-
tersucht werden.

Im letzten Teil dieser Arbeit wird ein UK-System vorgestellt, welches
die erfolgreichsten der zuvor betrachteten Adaptionsverfahren implementiert.
Nach einer Präsentation der verschiedenen kommunikationsfördernden Kom-
ponenten wird von der Anwendung dieses Systems berichtet, welches seit
mehreren Jahren in einem Rehabilitationszentrum eingesetzt wird.
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Résumé

Ce mémoire étudie les capacités de méthodes d’adaptation pour la prédiction
de mots, une stratégie importante dans le contexte de l’aide à la communi-
cation pour personnes handicapées. Notre première partie présente le do-
maine de la communication assistée et de la prédiction de mots. Dans ce
cadre, nous avons abordé en particulier les modèles de langage stochastiques,
qui se sont avérés très appropriés dans le contexte de la prédiction. Ensuite,
nous avons étudié deux groupes d’approches adaptatives. Le premier groupe
de méthodes traite de l’adaptation aux préférences lexicales et syntaxiques de
l’utilisateur d’un système de communication assistée. Au sein de ce groupe de
méthodes, nous avons étudié le modèle cache, le lexique auto-adaptatif et le
modèle d’utilisateur dynamique (MUD), intégrant toute saisie de l’utilisateur.

Le deuxième groupe de méthodes rassemble des approches qui ont pour
objectif d’exploiter le contexte sémantique. Dans ce contexte, nous avons
en particulier étudié l’analyse sémantique latente (ASL), un modèle vecto-
riel qui se base sur les propriétés distributionnelles d’unités lexicales. Cepen-
dant, l’intégration de l’information sémantique dans le modèle de prédiction
général présente un aspect difficile. Pour cette raison, nous avons développé
et étudié plusieurs possibilités d’intégration.

Dans la dernière partie du mémoire, nous présentons un système d’aide
à la communication, dans lequel nous avons implémenté les méthodes
d’adaptation les plus prometteuses. Après une description de l’interface util-
isateur ainsi que des composants de communication améliorée, nous avons
exposé quelques expériences réalisées avec ce système, qui est utilisé depuis
plusieurs années dans un centre de rééducation fonctionnelle.





v

Preface

Interestingly, it was an Englishman who pronounced the following words, one
year after the Second World War had ended: ”The first step in the re-creation of
the European Family must be a partnership between France and Germany.1” This En-
glishman – Winston Churchill – was convinced that the ceaseless nationalistic
rivalries on this continent could only be overcome by creating a supranational
structure. And his endeavors were rewarded; 60 years later, most Europeans
use the same currency, live and work wherever they want, they travel without
border-controls, and they take all this for granted.

In this development the German-French partnership has indeed attained
particular importance. The political, economic and cultural bonds between
the former archenemies have become exceptionally strong; France and Germany
are nowadays often referred to as the heart or engine of the European Union.
This is however not a matter of course, it results from a multitude of politi-
cal efforts, like the Elysée friendship treaty from 1963, but also from setting
up numerous exchange programs between youth of both countries. The work
of organizations like the Franco-German Youth Office (DFJW/OFAJ), the French-
German University (DFH/UFA) and many other municipal and academic ini-
tiatives have notably consolidated these efforts.

The present thesis is likewise a product of this integration process: It has
been prepared in a so-called cotutelle framework, implying a co-supervision by
tutors from both countries. I had not only the chance to have two supervisors
but also to work in both countries, to become acquainted with two different
academic systems and research traditions, as with two different ways of living.
Establishing this binational project was somehow a metaphor on the overall
process: It was difficult and tedious. But in the end I can say that it was more
than worthwhile.

1Winston Churchill: Speech to the academic youth, Zürich, 19 September 1946.
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handle and process my masses of data and resolve programming problems.

The application of the work developed would not have been possible with-
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Notation

X Random variable

Xn
1 Variable sequence of length n

x Any event or outcome of X (e. g. occurrence of a symbol)

p(x) Probability of an event x

P (x,m) Probability estimate for an event x with respect to a model
m (normally m is omitted)

C(x) Occurrence frequency of x in a given data set (corpus)

P ∗(x); C∗(x) Adapted or smoothed probability estimate; frequency for
an event x

H(X) Entropy of variable X (cf. section 3.1)

PP (Xn
1 ,m) Perplexity for a sequence of length n with respect to a

model m (cf. section 3.1)

wi Any word of the given vocabulary

~wi A vector representing word wi in a semantic space

ci Any word class or part of speech (of a given tag set)

hi Current history or context (i. e. all symbols to the left from
the current prediction position)

V ; |V | Vocabulary; vocabulary size

α, β Constant scaling factor or backoff weight

λ Interpolation coefficient

ν Normalization function

θ Threshold value

ksrn Keystroke saving rate with respect to a list of n words (cf.
section 2.5.2, eq. 2.5)

ASD Average scanning distance (cf. section 2.5.1)





Chapter 1

Preliminaries

denn das Menschlichste, das wir haben,
ist doch die Sprache

THEODOR FONTANE
(Unwiederbringlich, 1891)

1.1 Introduction

This thesis connects two research areas which are – at first glance – rather dis-
tinct: On the one hand we discuss issues of word prediction, which represents
a more or less classical problem in natural language processing (NLP); on the
other hand we deal with questions of alternative and augmentative communica-
tion (AAC), a subfield of disability research that aims to enhance the commu-
nicative facilities of speech- and motion-impaired persons.

The aim of NLP as a discipline is to create computer systems that are able
to perform human language tasks in a robust, efficient and computationally
tractable way. In this regard it has to be considered a branch of artificial in-
telligence, and it should be distinguished from computational linguistics (CL),
which Crystal (1991) defines as ”a branch of linguistics in which computational
techniques and concepts are applied to the elucidation of linguistic and phonetic prob-
lems”. So, whereas CL aims to study human language using computational
tools, NLP develops computational tools that process human language, with-
out making rigorous claims on linguistic or cognitive adequacy.1

Typical NLP tasks are speech recognition, machine translation or optical
character recognition. In such tasks an incomplete, mutilated or simply al-
tered input signal is to be transformed into a linguistically well-formed output

1But as Cunningham (1999) points out, ”there is crossover and blurring of these definitions in
practice”.

1



2 1.1. Introduction

signal, i.e. given all information provided by the input, the most likely output
has to be predicted. The major achievements in the past thirty years of NLP ba-
sically concern this input-output mapping and the way in which the input can
be analyzed in an optimal manner. As stated above, optimality in NLP is to be
understood in terms of robustness, efficiency and computational complexity,
not in a linguistic sense. Yet it can be claimed that a large range of sophisti-
cated models and approaches has been developed in this area, at every level of
linguistic description. And in many of these models prediction of characters,
phonemes, morphemes, words or even larger constituents is involved.

Research in NLP has yielded fruit: While far from perfect, large-scale ma-
chine translation systems nowadays provide translated manual pages for soft-
ware companies and internal reports for political institutions (e.g. the Euro-
pean Commission), speech recognizers and dialog systems inform passengers
about train connections, grammar and spell checkers are built into almost ev-
ery text processor.

Research in AAC on the other hand ”involves attempts to study temporary
or permanent impairments, activity limitations, and participation restrictions of in-
dividuals with severe disorders of language production or comprehension, including
spoken and written modes of communication” (cf. ASHA, 2002). Persons affected
by neuro-muscular disorders or cerebro-vascular accidents can be unable to
control their speech organs or to communicate otherwise (e.g. by using sign
language); they are dependent on an external aid – be it human or artificial –
in order to be able to communicate at least partly.

This kind of disability is not as rare as one might think: According to the
American Speech-Language-Hearing Association (ASHA) approximately two mil-
lion Americans are unable to use speech and/or handwriting to meet their
daily communication needs, representing between 0.8% and 1.2% of the U.S.
population (ASHA, 2002). Similar numbers are reported for the UK: Newell
et al. (1998) estimate that over one million people in the UK have severe lan-
guage impairment, and more than 300.000 cannot communicate using speech.
Such counts suggest a considerable social importance for research in this field,
and this importance is growing, due to the demographic trend in many de-
veloped countries: With the aging of the population, the number of people
in need of assistance and assistive technology will increase significantly (cf.
European Commission, 2007)2.

Within AAC research the development of electronic communication aids
takes a prominent position, for two main reasons: the loss of communicative
abilities, being unable to express one’s thoughts and to interact with others is
normally perceived as the most severe kind of impairment, leading to social
exclusion and to complete dependence on speech-abled persons. Therefore
every means enabling to reduce the dependence of such persons is of eminent
importance. Moreover, the development of computer-based communication

2(European Commission, 2007), p. 2: ”[...], the number of older persons in need of care will more
than double by 2050, increasing the demand for formal care services.”
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technologies increases the need for accessibility to these new media, especially
by disabled persons who are in particular isolated from other forms of inter-
action.

The main objective of assistive communication systems is to enhance the
communicative abilities of their users. To achieve this, several factors have to
be considered in their development. Newell et al. (1998) list the following:

1. reduction of the physical input necessary to produce an utterance

2. reduction of the cognitive load on the user

3. increase in the speed of communication

4. reduction in delay between the user formulating what they want to say
and the device articulating the appropriate words.

In many AAC systems these problems are addressed by two complemen-
tary strategies: the first is to offer an efficient item selection procedure which
can be controlled by a binary command. Here, each of the items (charac-
ters/words/icons/phrases) is successively activated and can then be selected
by the user (a method normally referred to as scanning). The other strategy
tries to predict the element that the user intends to insert. If the wanted el-
ement is guessed correctly, the user can simply confirm the prediction and
thereby saves effort and time. The problem of prediction can again be traced
back to the input-output mapping problem: How can the input (number of
items to insert) be reduced as far as possible, so that the output, as intended
by the user, can still be generated?

This is the point at which the two disciplines meet: In NLP a class of mod-
els has been developed that is well-suited to handle the mapping problem:
Stochastic language models (SLM) encode probabilistic distributions of lan-
guage symbols and they are able to determine the most probable symbols to
follow a given context (at least to some extent). Computationally these models
are equivalent to stochastic finite state automata, which means that they can
only reflect linear dependencies, moreover the context they exploit is limited
to a few words (usually two or three). Still, they have some very attractive
properties: they are very robust, i.e. they will always return a result, and the
computational effort, compared to other, more structural models, is very low.
In addition, despite their inability to describe complex linguistic structures,
they seem to capture already a large deal of regularities in human language.
In any case SLM are nowadays successfully applied in a wide range of NLP
tasks; for example most large-scale speech recognizers incorporate knowledge
from an SLM at some point.

As stated above, these models calculate probabilities for a given symbol
after a given context. However, it is a truism of linguistics that a word or a
phrase to be uttered does not simply depend on the n previous words. Apart
from the information to be transmitted (which is of course unpredictable) hu-
mans choose their words based on a large range of situational factors: the
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current style and topic of the conversation, the interlocutor, the purpose of
the message, their sex, social status and age, and, as we deal with human be-
ings, they might simply have personal preferences for certain words or syn-
tactic constructions that are beyond any rational explanations. As a result the
lexical, syntactic and semantic characteristics of the generated messages vary
considerably. But these factors are not arbitrary; during message composition
people make extensive use of this situational knowledge. A good example
is alignment: interlocutors tend to align their ways of expression: after a few
sentences only they start using the same vocabulary and syntactic structures
(Pickering & Garrod, 2004; Branigan & Pearson, 2006). This phenomenon hap-
pens unconsciously and without any explicit negotiation; people adapt their
way of communication to each other.

Statistical language models in the above described form are unable to
adapt. Their probabilistic properties are fixed, once they have been estimated
on a training corpus. This means that they cannot make use of a vital part of
human language, which implies a considerable loss of performance. But espe-
cially in the context of AAC, intelligent, adaptive models are needed in order
to support as far as possible the communication process of a person who is
unable to express her- or himself otherwise. The investigation of such models
will be the central topic of this work.

1.2 Research questions and objectives

It has long been known that adaptation is a powerful strategy to improve a
system’s performance in changing environments. Adaptive approaches can
nowadays be found in various domains, from economics via cybernetics to
many problems in artificial intelligence (for an overview cf. Holland, 1992).
Therefore, even though this alone might not be a sufficient argument, it is con-
sistent with the current scientific development to investigate the use of adap-
tive techniques in AAC.

We intend to study two families of adaptation strategies: One focuses on
the lexical and syntactic preferences of the user; here we will investigate three
major models: (i) the cache model, (ii) the user lexicon, and (iii) the dynamic user
model, a language model which dynamically integrates all user input. The
other family of adaptation methods exploits the semantic context of the mes-
sage to be typed. Semantic knowledge plays an important role for the pre-
diction of content words (e.g. consider the probability of merger to occur in
a stock trading context versus a loose conversation about football). However
this kind of knowledge is obviously rather elusive and difficult to formalize. In
this context we want to make use of Latent Semantic Analysis (LSA) a vectorial
technique based on distributional properties of words which has been suc-
cessfully employed in a variety of very different tasks, including information
retrieval, cognitive psychology (lexical acquisition) and automated summa-
rization. However, as the problem of integrating information from LSA with a
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standard language model turns out to be non-trivial, we will propose several
strategies how this integration can be achieved.

All these different methods will be implemented and evaluated in detail
with respect to their adaptive and predictive capacities. For the assessment
we will apply cross-register evaluation, i.e. we will compare the results of sev-
eral test corpora from distinct registers (or domains) in order to get a more
reliable picture of the performance variance in general and the adaptivity of
the respective model in particular. Furthermore, to assure at least some cross-
linguistic comparability the assessment will be performed on three languages:
French, German and English.

Apart from the (rather theoretic) investigation of adaptive models, the sec-
ond main objective of this thesis concerns the integration of such models into
an assistive communication system. It could be observed for many years in the
domain of AAC as well as in other subfields of artificial intelligence that only
small-scale, showcase applications were developed in order to prove the fea-
sibility of the approach. However, too often such applications included what
Cunningham (1999) calls a ”toy problem syndrome”: As soon as the approach is
scaled up to a real-world task, it turns out to be inappropriate, due to problems
of complexity or usability (which is more often the case). As a result a lot of
probably thorough and long-lasting work is futile.

In order to avoid such a mismatch with the real world we aim to develop a
system which is not only applicable but applied. Fortunately, we do not have
to start from scratch here, we can base our development on the SIBYLLE sys-
tem, an assistive communication system, which has evolved from the work of
Igor Schadle, who obtained his PhD from the Université Bretagne-Sud (France)
in 2003. At that time Igor also had established contact with the rehabilita-
tion center of Kerpape (Morbihan, Brittany), where SIBYLLE has been applied
with communication-impaired users since. The unique value of a direct con-
tact with these users cannot be overestimated for the development of such a
system.

A third major aspect of our work concerns questions of language portabil-
ity. As mentioned above, we assess our models on three languages; however
we also want to enable our system to work with these languages. This implies
on the one hand that we develop a generic and modular architecture, but on
the other hand it requires addressing language-specific peculiarities such as
productive compounding in German.

Our final, overall objective is to create a well-performing, plurilingual AAC
system that makes use of the adaptive strategies investigated and that is able
to palliate the communicative impairment of its users as far as possible.
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1.3 Thesis organization

At times the enforced linearity of a textual document can be impedimental.
This is particularly true in the case of a thesis operating from two rather dis-
tinct points of view. For this reason we have to ask the reader to consider both
the chapters 2 and 3, being introductions to their respective domain, as being
on par with regard to the text structure.

Chapter 2 presents the research field of Alternative and Augmentative Com-
munication. Here we discuss the major challenges and objectives of this dis-
cipline, give a short outline of its development and introduce some of the
prevailing research methods. Furthermore, an overview of the most influen-
tial systems and projects in AAC will be given, and in the end the evaluation
methodology of such approaches is discussed in detail.

Chapter 3 on the other hand gives an introduction to the theory of commu-
nication in general and to approaches of language modeling in particular. We
outline the problem of prediction from an information-theoretic perspective
and introduce the basic notions of Markov processes and stochastic (n-gram)
language models. In a longer section we then discuss the problem of data
sparsity and present methods to estimate the probability of unseen events (so-
called smoothing models). Afterwards some more practical issues like param-
eter estimation or storage formats for language models are depicted, and in
the end we present two other families of language models: those based on
linguistic considerations (e.g. chunk parsers) and maximum entropy models,
a promising approach that enables to combine all types of information in one
model.

After having presented the state of the art in the relevant domains, the
chapters 4 and 5 will be devoted to the problem of adaptation in language
modeling. Chapter 4 focuses on methods enabling a model to adapt to the
user’s lexical and syntactic preferences. We here discuss problems of training
dependency and adaptation in language modeling, and we present in detail
the three already mentioned adaptation techniques. We then introduce our
evaluation paradigm as well as the training and test corpora we have made
use of. In the end we present results of a detailed evaluation of all adaptation
methods.

Chapter 5 then deals with the other family of adaptation models, namely
those that enable to exploit the current semantic or topical context. After mo-
tivating the use of semantic information in our task we will present several
models that enable to capture such information from the context and exploit it
for prediction. We will then concentrate on Latent Semantic Analysis, a method
that has been shown to provide reliable information on long-distance seman-
tic dependencies between words in a context. After a detailed presentation of
the approach we introduce several methods enabling to integrate the semantic
information captured by LSA into a prediction model. As before the chapter
ends with an in-depth quantitative evaluation of the predictive capacities of a
language model adapted by information from LSA.
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The last major chapter (6) is finally devoted to the presentation of the AAC
system that has been developed in the context of this thesis: SIBYLLE. Its lat-
est version incorporates the adaptive word prediction models that have been
presented in the previous chapters as well as a number of other features that
have proven useful for AAC users. We will present the system as it is, explain
the major functionality of the user interface and the key selection strategies
included, and we disclose some details of how the system was implemented.
After an evaluation of the different key selection techniques and the word pre-
dictor, using the integrated adaptation models in combination, we close this
chapter by reporting findings from the application of SIBYLLE in the Kerpape
rehabilitation center. In the final chapter we try to make a conclusion of the
results achieved and give an outlook on further research efforts that we deem
reasonable within the context of this thesis.
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Chapter 2

Alternative and Augmentative
Communication

where words are scarse,
they are seldome spent in vaine

WILLIAM SHAKESPEARE
(Richard II, 1597)

This chapter provides an introduction into the research field of Alternative and
Augmentative Communication. First, the main objectives and research questions
of this young discipline are presented (2.1), followed by a historic outline of
its development (2.2). We will then present the most important strategies (2.3),
and we will give an overview of the most influential projects and develop-
ments in this area (2.4). In the end of the chapter, we will discuss the question
of how a communication system can be evaluated (2.5), which is a fundamen-
tal concern for the following chapters.

2.1 Aims and challenges of AAC

In his Politics, Aristotle described two elementary properties of man: Being a
’zoon logon echon’, an intelligent animal, possessing the gift of language, and be-
ing a ’zoon politikon’, which is commonly translated as ’social animal’.1 Social
interaction is one of the most fundamental and essential human activities, and
it is based on communication. Being deprived of one’s communicative abili-
ties is normally considered to be the most severe kind of impairment; many
legal systems know solitary confinement as the most rigorous form of punish-
ment, and psychological studies have shown that prisoners being deprived of

1cf. Aristotle: Politics - A treatise on government, translated by William Ellis, published by J.
M. Dent & Sons Ltd, London, Toronto, 4th reprint, 1928.

9
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the ability to communicate for a longer time often develop mental or psycho-
somatic disorders.

Loosing one’s communication facilities however can also be due to a num-
ber of severe medical conditions, affecting not only the speech organs but also
the limbs, so that alternative communication channels (e.g. by sign language)
are not accessible either. This can be caused by a range of neuro-muscular dis-
eases, by cerebro-vascular accidents or by brain lesions. In the following we
will give a short overview of the different conditions that can lead to such a
state:

Cerebral palsy is a non-progressive disease acquired before birth or in early
childhood, leading to various kinds of motoric dysfunctions. It can result in a
variety of clinical patterns: diplegia, tetraplegia, athetosis or dyskinesia, some-
times combined with cognitive disability, which can also include aphasia. The
incidence of this condition in the industrial countries is approximately 0.6 - 2
cases per 1000 births.

Amyotrophic lateral sclerosis (ALS, also called Maladie de Charcot) causes a
progressive degeneration of the motoric nervous system including the periph-
eral nerves and the respiratory system. ALS usually strikes people between
40 and 60 years of age, men are affected more often than women. It gradually
leads to complete loss of muscular functions, while cognitive abilities remain
unaffected. The disease is quite rare; it is estimated that 1 to 2 persons per
100,000 become affected every year.

Myopathy, in particular Duchenne dystrophy is a hereditary disease leading
to degeneration of muscular tissue, while the nervous system and cognitive
functions remain intact. Its onset is in early childhood, patients have a life
expectancy of less than 30 years, death is usually caused by respiratory weak-
ness. The incidence of Duchenne dystrophy is 1 case per 3500 births.

Another reason for such an impairment may be cerebral lesions caused by
apoplexia or head traumatisms (from an accident), leading to a disconnection
between the cerebrum and the brain stem. This includes the loss of nearly
all voluntary muscular functions, whereas the higher cognitive capacities may
not be affected at all. A person suffering from such a lesion may be aware and
awake while she or he is not able to move, feeling locked within her or his own
body. For this reason such a state is referred to as the Locked-In Syndrome (LIS).

Whether suffering from a disease or a brain lesion, all these persons have
in common that they have lost the ability to communicate with their environ-
ment while their cognitive facilities remain (mostly) unaffected. Treatment of
the above described conditions is very limited or impossible, these persons
therefore have to adjust their life with this severe handicap. Apart from all
other implications of such a condition, finding some means of communicating
is of first and foremost importance, and this is the research ground of Alterna-
tive and Augmentative Communication (AAC).

The probably oldest and most basic AAC device consists of a communica-
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tion board, i.e. a table of icons, letters or words printed on a card board from
which the person can successively select the intended items by either pointing
or letting the interlocutor point to them, depending on her or him to compose
and interpret the full message. Figure 2.1 shows such a non-electronic com-
munication board.

Figure 2.1: Example of a communication board

Electronic devices can emulate the same kind of functionality, but the task
of pointing and composing can then be performed by the system, which im-
plies a larger extent of independence. Nevertheless, the communication rate of
these devices remains extremely reduced. Whereas people produce up to 200
words per minute in oral communication, a person using an AAC device can-
not express more than a few words (see Table 2.1, cf. Le Pévédic, 1997; Newell
et al., 1998). This slowness of message input does not only imply loss of time,
it also has a substantial impact on how the person can interact with others.
In colloquial communication, long delays are rarely accepted. This leads to
an asymmetric form of communication and does not allow the AAC user to
control the course of the discussion and to express what she or he intended
to say. Communicating at a rate of less than 10 words per minute means that
many goals of spoken conversation, such as gabbling, swearing, telling a story
or simply making a joke cannot be achieved anymore.

Communication mode Speed (words per minute)
Oral communication 150 – 200
Skilled typing (10 fingers) 40 – 100
Handwriting 12 – 25
Unskilled typing (one finger) 10 – 30
AAC device < 10

Table 2.1: Communication rates for different modes
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Another limiting factor in AAC is the selection process itself. Selecting
each symbol separately from a list implies great effort and is therefore rapidly
tiring. Whereas unimpaired people are able to speak for hours with no sign
of fatigue, a speech-deprived person may feel exhausted after entering only a
few sentences.

These two aspects, communication rate and cognitive effort, span the dimen-
sions along which AAC research has to be oriented (and evaluated): How far
can an AAC device enhance the communicative abilities of its user? How ”flu-
ent” is the person when communicating with the device? And how much
cognitive effort has to be implied? How usable is the device in the adapted
environment of the handicapped person?

Regarding the standard architecture of AAC systems, we can distinguish
four basic components: First of all there is a physical input device, which is
adapted to the remaining capacities of its user (see Figure 2.2). If the per-
son is still able to control slight arm movements she or he can profit from the
larger degree of freedom offered by an adapted trackball. When her or his
abilities are further restrained, a single-switch device has to be used. Since the
functionality of the muscles controlling the eye-glimpse or the respiratory ap-
paratus is usually least affected, eye or breath sensors are often applied. For
patients suffering from cerebral palsy, head movements are normally best con-
trolled, therefore these users often use sensors triggered by head movements.
In the (very rare) cases of a complete loss of muscular control, the application
of a brain-computer interface (e.g. thought-translation device (TTS), cf. Birbaumer
et al., 2000) exploiting cortical activity (i.e. slow cortical potentials) may be-
come necessary.

Figure 2.2: Input devices for an AAC system: (i) gross-motor trackball, (ii) eye
glimpse sensor, (iii) breath sensor, (iv) head movement sensor

The second standard component of an AAC system is a software interface
offering functions to insert messages. Depending on the capacities and pref-
erences of the user it displays a table of characters, phonemes or icons and it
allows the user to select an item through an iterative scanning technique: Each
key is successively activated and can then be selected via the user’s input de-
vice (i.e. the communication channel is reduced to binary or yes/no input).

The last two components are an editor which assembles the selected sym-
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bols and – if the AAC system is also used for oral communication purposes –
a speech synthesis module, allowing to read out the composed message.

2.2 Historic development

Considering the development of AAC it is important to distinguish between
icon-based and text-oriented systems. Iconographic communication is a field
that has developed almost separately, and complex theories and models were
developed here. However, since the focus of this work is on text-based AAC,
we will present iconographic communication systems only briefly in the begin-
ning and then explain the development of AAC relying on (alphabetic) text.

2.2.1 Iconographic AAC

Some persons are unable to communicate using an alphabetic system, either
due to mental impairment (e.g. aphasia) or because they have not (yet) learned
to read and to write. As an alternative to text-based communication a number
of iconic or visual languages were designed, of which we will present three:

The most prominent one is the Bliss symbol system (Blissymbolics)2 (cf.
(Bliss, 1965). Blissymbolics was developed by Charles K. Bliss in the 1940s, and
it was at first intended to remove language barriers and problems of ambigu-
ity. Today Bliss is one of the most widespread visual languages, even some
websites offer a bliss-based access. The system of Blissymbolics is composed
of over 3000 symbols, which can be combined in order to create new symbols
(see Figure 2.3, left). The language has a grammar which allows for sentences
not only in the present tense, but past and future tense as well. It also contains
markers for questions, commands, plurality, and possession.

Another iconographic communication system is Minspeak R©3, which was
developed in the beginning of the 1980s (Baker, 1982). It is a pictorial sys-
tem that allows to express various meanings by combination of a small set
of pictures that each bear multiple meanings (also referred to as ”semantic
compaction”). A message can be composed by selecting and arranging sets of
icons.

Finally, Makaton4 is based on a vocabulary of manual signs and gestures
as well as of graphic symbols. It was developed in the mid 1970s in the UK
for communication with residents of a large hospital who were both deaf and
intellectually disabled. The language comprises a core vocabulary of app. 450
central concepts and an open-domain vocabulary of over 7000 concepts, rep-
resented as pictograms (example sentence in Figure 2.3, right).

2http://www.blissymbolics.org/
3http://www.minspeak.com/
4http://www.makaton.org
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Figure 2.3: Examples of iconic communication systems: Bliss symbols (left)
and Makaton pictograms (right)

At first these communication systems were used without electronic de-
vices, i.e. by pointing to the respective icons on a cardboard. Nowadays
however many electronic systems exist, which are based on one of the above
described languages, offering selection, browsing and editing facilities as well
as speech synthesis of the composed message. For example, Minspeak R© based
systems5 are available for many operating systems and kinds of computers
(workstations, handhelds); Bliss fonts can be installed and used on any com-
puter, so that Bliss messages can be composed with a normal editor.

2.2.2 Text-based AAC

The first and simplest AAC devices for speech-impaired but literate persons
were cardboards onto which the alphabetic letters and possibly some frequent
words or phrases were printed (cf. Figure 2.1). While these cardboards are
simple and straightforward to use, they also have some serious disadvantages:
The interlocutor has to be able to observe the selection process and to compose
the message from the selected symbols; when the disabled person is not able to
point to the cardboard, the interlocutor has to read out the symbols or words
until the wanted element is reached, which the disabled person then confirms
by some visible reaction (i.e. an eye blink or any other movement).6 As men-
tioned earlier on, this way of communication is not only painfully slow and
tedious, it also means that the disabled person is completely dependent on the
interlocutor.

The first research efforts in AAC therefore concentrated on developing
electronic devices that could replace the letter board and to reduce the de-
pendency on a human partner by providing automated symbol scanning and
composition techniques. One of the first examples of such a device was the
Tufts Interactive Communicator (Foulds, 1973), comprising a letter display from

5Developed by the Prentke Romich Company, http://www.prentrom.com/
6The book ”Le scaphandre et le papillon” (The diving bell and the butterfly) by Jean-Dominique

Bauby (1997) was entirely written in this fashion. Bauby, former chief editor of the fashion
magazine Elle, suffered from a Locked-In Syndrome after a cerebro-vascular accident and was
only able to control the blink of his left eye.
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which each letter could be selected by a line-column scanning process (cf. Fig-
ure 2.4). As most other computer systems in that time the device consisted of
a rather large and clumsy box which was not easy to handle by a handicapped
person.

The Talking Brooch (Newell, 1974) was the first portable communication
device for speech-impaired persons. It allowed the user to type characters
or words on a miniature keyboard which was connected to an LED display,
pinned to the chest of the person.

Soon however, researchers as well as practitioners recognized that com-
puting facilities can be of more help than simply replacing the letter board. In
the beginning of the 1980s the first text-to-speech systems were developed to
provide non-speaking persons with vocal facilities (cf. Hunnicutt, 1981). More-
over, some approaches were presented to accelerate message composition by
anticipating the text to be entered (cf. Heckathorne & Childress, 1983; Hunni-
cutt, 1986).

2.3 Strategies to enhance communication

AAC research mostly concerns the design and the functionality of the interface
component. Most approaches to enhance communicative facilities of the user
can be traced back to one of two strategies: Either enhancing the selection rate
or reducing the number of selections necessary to enter a message. The former
mostly tries to optimize the arrangement of the keys on the interface as well
as the selection mode, the latter aims to reduce the selection effort either by
constraining expressivity (i.e. limiting the number of possible messages) or by
anticipating redundant symbols.

2.3.1 Optimizing key selection

The first question that arises when we try to optimize the selection process
on a keyboard is the degree of freedom a user possesses. If a person is able
to control a mouse or a trackball, the problem is substantially different than
if she or he can only control a binary input device. In the following we will
concentrate on the latter case.

If a person is only able to control a single switch (e.g. an eye or a breath
sensor, cf. 2.2) the following selection methods are possible:

• linear: Every item on the keyboard is highlighted one after the other.
One selection step is needed.

• line-column: The keyboard is scanned line-wise until a line is selected,
then column-wise (cf. Figure 2.4). Two selection steps are needed.
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• block-wise: The keyboard is divided into a number of blocks of keys,
which can recursively contain sub-blocks. A key is chosen by selecting
the corresponding blocks in a tree-like fashion until the wanted item is
reached; the number of selection steps depends on the depth of the block
arrangement.

Figure 2.4: Line-column scanning on an alphabetic keyboard

Another important dimension for optimizing the selection process is the
arrangement of the keys.7 It is well-known that the arrangement of a stan-
dard QUERTY keyboard is far from optimal; many more optimal solutions
have been developed in the mean time (e.g. the Dvorak keyboard, cf. Dvorak
et al., 1936). But even though these arrangements would allow faster typing,
less fatigue, and less strain injuries, they were not accepted on the large scale,
because human beings are obviously very prone to stick to familiar environ-
ments.

Likewise we often find in AAC systems sub-optimal keyboards. While
most of the time an arrangement according to letter (or phoneme) frequency
would be optimal for linear scanning (i.e. the most probable symbols are
scanned first), alphabetic or QUERTY settings are also found.

Static frequency ordering is however not the only strategy to accelerate the
selection process. Since we deal with a virtual keyboard, the arrangement of
the keys does not have to remain fixed. It can be dynamically rearranged af-
ter every selection step, so that the most likely characters (or phonemes) for a
given context appear first on the keyboard. The occurrence of ’x’ for example
is much more probable after ’e’ than after ’t’ or ’j’. In order to achieve an op-
timal rearrangement, a letter prediction component has to analyze the current
context (i.e. the last typed characters) and to determine the probability of each
character to follow. An example for such an approach is the work of Schadle
et al. (2001), also explained in chapter 6 (6.1.2).

7Since the work presented here focuses on a text-based AAC system, only letter keyboards
are considered; however most of the design decisions can be transferred to iconographic
systems.
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Yet another possibility for speeding up key access is to make the keyboard
ambiguous, i.e. to assign several characters to one key. This obviously reduces
the number of keys to be scanned, but creates the problem that the ambigu-
ity has to be resolved. A typical example for an ambiguous keyboard is the
numeric keypad of a mobile phone, where each number also comprises 3 or
4 letters (1 → a,b,c; 2 → d,e,f ; ...). The ambiguity can be resolved either by
multiple selection (e.g. selecting a key twice for typing the second character,
multi-tap approach), or by automated disambiguation of the key sequence. A
well-known disambiguation strategy is offered by the T9

TM
system8, which is

installed on almost every mobile phone. It predicts the most likely word from
an ambiguous input, using frequency tables of words.

Another ambiguous keyboard is the Uniglyph system (Belatar & Poirier,
2007) working on three keys only. Each of the keys corresponds to a graphic
primitive (glyph), grouping a number of characters that contain it (Figure 2.5).

Figure 2.5: The three keys of the Uniglyph ambiguous keyboard, representing
character primitives (cf. Belatar & Poirier, 2007)

To enter a word using Uniglyph, the user simply has to select a suite of
glyphs, which are then disambiguated by the system. If the suite cannot be
disambiguated, a list of alternatives is presented to the user, who then has to
select the wanted element.

It is obvious that not all of the keyboard arrangements, scanning and se-
lection strategies can reasonably be combined with each other. For example,
while it might theoretically be optimal to dynamically rearrange an ambigu-
ous keyboard, a user will soon give up due to the tremendous cognitive load
implied.

2.3.2 Reducing the number of keystrokes

The recent advances in Natural Language Processing (NLP) had very stimu-
lating effects on the development of AAC techniques and systems. Especially

8T9 refers to ”Text on 9 keys”, and it is developed by Nuance Communications,
http://www.nuance.com/t9/
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with regard to the enhancement of message composition, various NLP tech-
niques have been applied that exploit the regularities of natural language. This
can be done at different levels of linguistic analysis, on the lexical and syntac-
tic, but also on the semantic level. To illustrate how NLP can in principle sup-
port an AAC user, let us consider a typical example with a human interlocutor:
Suppose a non-speaking person manages to select the word onset ’san’ from a
communication board. As little as this could suffice a human interlocutor to
complete the word to ’sandwich’9. Since ’sandwich’ is a count noun, and refers
to an object that is normally eaten, and we can suppose that the person has a
certain intention to utter this word, it would make sense to form a full phrase
like ”I would like to eat a sandwich”. Up to this point we have exploited informa-
tion at the three mentioned linguistic levels: Lexical probability, knowledge
about the syntactic well-formedness of a sentence, and semantic knowledge
on the mentioned concept ’sandwich’, being an edible object. Current AAC
systems are of course far from the level of abstraction depicted here, but they
do try to exploit the same kind of information in order to reduce the number
of selection steps to be performed. We can grossly distinguish between five
kinds of approaches:

• Language generation

• Text retrieval

• Top-down composition

• Bottom-up composition

• Abbreviation expansion

Language generation techniques allow the user to enter a few keywords (or
select a number of icons), from which the system tries to construct a meaning-
ful and grammatical text message. Considering the already mentioned exam-
ple, a user could enter ”eat sandwich” or select the corresponding icons, which
the system then translates into a full message. While these approaches are in
principle able to considerably reduce the user effort, they normally have trou-
ble to deal with ambiguity. And a wrong translation of the intended message is
very penalizing, since the user then has to delete and re-enter the message (in a
different manner), which implies a loss of time as well as additional cognitive
effort.

The underlying idea of text retrieval methods is to provide the user with
a large set of predefined messages or text snippets which can quickly be re-
trieved during communication. Such approaches either define a number of
typical contexts or perspectives (like the TALK system, cf. Todman et al., 1999)
which can be browsed for, or they rely on techniques from classical full text

9We must not neglect the effects of contextual knowledge here: It is very easy to guess ’sand-
wich’ from ’san’ around lunch time.
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retrieval, matching one or more query terms in a set of messages. Whereas
standard IR approaches however aim more at achieving high precision in the
retrieved documents, text retrieval methods in AAC try to establish a high re-
call with minimal input (number of key words).

Top-down approaches offer a set of communication scenarios, i.e. a con-
strained set of message components, from which a full message can be com-
posed. With respect to our example, a user could first select the subject (e.g. I,
You, He, Mary, ...) then the predicate (e.g. am, have, would like), then a contin-
uing verb phrase (e.g. to sleep, to drink [x], to eat [x]) and finally choose from a
list of food objects the intended one. Whereas this kind of approach anticipates
a lot of information and can therefore lead to a considerable reduction of se-
lection steps, it severely constrains the user’s possibilities of expression, since
only those phrases can be composed whose components are included in the
selection sets. It is therefore mainly applied in task-oriented communication
situations such as describing medical conditions (e.g. ”I feel nauseous”, ”My [x]
hurts”).

Bottom-Up composition on the other hand does not impose any kind of re-
striction on the intended message. Each symbol is selected separately, which
implies a greater degree of freedom, but usually also more selection steps. To
reduce the effort in bottom-up composition, various techniques are applied
that try to predict the following textual element (usually a word), based on the
already entered message part. Many AAC systems incorporate a text predic-
tion component by displaying a list of words, from which the intended one
can be selected; others try to complete the current word directly in the editor.

Finally, abbreviation expansion (also known as ’disabbreviation’) techniques
are based a set of predefined abbreviation/equivalent pairs. If the user enters
an abbreviation, it is replaced on the fly by the corresponding word or phrase.
While this is potentially very helpful, the set of abbreviations has to be known
to the user, which implies that their number is rather limited. For this rea-
son abbreviations are normally stored only for frequently recurring forms or
phrases, e.g. ”gm”→ ”Good morning!”. There have been attempts to automati-
cally generate abbreviations, based on a set of rules (cf. Stum & Demasco, 1992;
Moulton et al., 1999)), but this includes the risk of unwanted expansion, which
is again very penalizing. Abbreviation expansion has been shown to be very
helpful, if the user is able to define her or his own abbreviations, because they
are adapted to the user’s needs, and they are usually better memorized.

2.4 AAC systems and research projects

2.4.1 Scientific efforts in AAC research

The following sections will give an overview of the most important research
projects and systems in the field of (text-based) AAC. It is not meant to be
exhaustive, but to give insights in the methods applied and the principal de-
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sign decisions. In order to keep an evolutionary perspective, the projects are
presented (mostly) in chronological order. In the end, some of the major com-
mercial systems in this area are also mentioned.

PAL and Syntax PAL

The Predictive Adaptive Lexicon (PAL) project (Swiffin et al., 1987a,b), developed
at the University of Dundee, UK, follows a bottom-up strategy of message
composition (cf. 2.3.2). It is one of the first systems offering a word prediction
component in an AAC text entering system. Word prediction is integrated in
form of a list which is updated after every insertion. The predictor makes use
of lexical frequencies and it can be extended with new words.

Syntax PAL (Morris et al., 1992) has been developed on top of the PAL ar-
chitecture. The previous model is augmented by a syntax-oriented component
using transition probabilities of parts-of-speech (PoS), which makes the pre-
diction sensitive to the current context.

Compansion

Developed at the University of Delaware, the Compansion system (Demasco &
McCoy, 1992) follows a language generation strategy: The user can insert or
select telegraph-like input, consisting of a few uninflected words, from which
the system constructs a well-formed sentence. The system comprises three
major components: (i) a word order parser, relying on a syntactic grammar,
groups the inserted words into larger constituents and adds further syntactic
information; (ii) a semantic parser then reasons about the intended meaning
of the content words and constructs a semantic interpretation; finally (iii) a
translator component generates a well-formed sentence from the previously
constructed representations. To give an example (cf. McCoy & Demasco, 1995):

Input: 5 apple eat John
Output: 5 apples were eaten by John

While in principle the system is able to reduce typing effort, it is obvious
that expressivity is largely restricted for the user, who is limited to the pre-
defined 1000-word vocabulary of the system and to the implemented phrase
structures. Another questionable aspect is structural ambiguity, which often
cannot be resolved automatically.

KOMBE

The European KOMBE project (Guenthner et al., 1992) aimed at developing a
communication system for ALS patients (cf. 2.1). The architecture is based on a
guided sentence composition (i.e. top-down) strategy, where a given message
is composed by selecting each component (word or constituent) one after the
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other. The approach relies on a grammar, conceptual rules and a lexicon in
order to suggest meaningful continuations for a given message beginning. The
vocabulary is especially tailored to medical purposes in order to facilitate the
dialogue between an ALS patient and a medical practitioner.

Figure 2.6: The interface of the KOMBE AAC system

The interface of KOMBE consists of a virtual keyboard, a word list, from
which the the wanted items can be selected, and an editor for composing the
message. Another component of KOMBE was designed for illiterate persons,
using a pictographic communication system (cf. section 2.2.1); it enables select
a set of icons, which are then translated into a textual message.

Predict / Profet

Since the early 1980s researchers at the KTH in Stockholm have been work-
ing in the field of AAC. The Predict system (Hunnicutt, 1986, 1989) consisted
of a writing aid that could be used on a normal PC together with a speech
synthesis. The word to be typed was predicted using a frequency-ordered
lexicon and a list of previously used words; moreover new words could be
integrated. The system underwent several extensions, and it was tried to in-
corporate more complex linguistic information such as deeper syntactic and
semantic structures (cf. Hunnicutt, 1989). Profet then (Carlberger et al., 1997)
is a further development of Predict. It combines frequency and syntactic infor-
mation, and it offers possibilities to manually modify the lexicon or to create
new lexica.

WordKeys

WordKeys (cf. Langer & Hickey, 1998) is a communication aid incorporating
predefined messages and a phrase retrieval system. The user can insert new
messages which are then automatically indexed and can be retrieved via a
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search window (cf. Figure 2.7). The retrieval component makes use of a se-
mantic lexicon which expands the query by synonymic and hyponymic ex-
pressions, moreover the query as well as the indexed messages are morpho-
logically analyzed. The ranking of the retrieved messages is then performed
according to their morphological and semantic similarity with the query. In
a user evaluation it could be shown that most of the time one key word is
sufficient for retrieving the intended message.

Figure 2.7: The interface of the WordKeys system

HandiAS

The project HandiAS (Le Pévédic, 1997; Maurel et al., 2000; Maurel &
Le Pévédic, 2001), developed at the universities of Nantes and Tours (France),
primarily focuses on the improvement of the word prediction process. It is
based on a hybrid architecture, combining weighted token automata, mor-
phosyntactic dictionaries and statistics on word usage. The model analyzes
the left context (i.e. the already entered part of a message) for morphological
and syntactic features in order to predict the syntactically most appropriate
lexical items, which are then proposed to the user. The approach includes
promising NLP techniques, however it was only prototypically implemented
and could not be evaluated in a real-life situation.

Dasher

The interfaces of the already presented systems all followed the same
paradigm: A list of lexical items is presented to the user, who can select from
it the intended element, which is then added to some editor. Dasher Ward
et al. (2000) follows a very different strategy: It offers a dynamically modified
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interface in which the user can browse by controlling a mouse or using eye
movements. Like in a somewhat old-fashioned computer game, all letters of
the alphabet arrive from the right-hand side; in order to form a word, letters
are to be threaded by moving the cursor towards the intended symbol; as the
movement continues, new letters arrive from the right. The arrangement of
the letters as well as the size of their selection fields is estimated by letter and
word statistics, so that the most probable items are the easiest to select.

Figure 2.8: User Interface of Dasher

According to the developers, communication rates of up to 34 words per
minute can be reached using Dasher with a mouse, but reports on the cogni-
tive load as well as on selection by eye tracking have not been made. So, this
interface might be a helpful solution for some users, who still have fine motor
control, but not for those having uncontrolled movements (e.g. in the case of
cerebral palsy).

VITIPI

The system VITIPI (Versatile Interpretation of Text Input by Persons with Impair-
ments) has been developed at the IRIT in Toulouse, France (Boissière, 2000).
While also being an unrestricted, bottom-up system, VITIPI follows a differ-
ent completion strategy: Instead of displaying a list of predicted words, VITIPI
proposes word parts to be selected by the user. If a word can be unambigu-
ously terminated, the ending is directly inserted to the text. Since the lexicon of
VITIPI is morpheme-based, unknown words can be completed as well, as long
as they terminate on a common ending. Moreover, VITIPI offers an automated
correction of the inserted text, which can be very useful for persons with loss
of fine motor control, who frequently make selection errors. According to an
evaluation study, the system is able to correct 72% to 75% of all typing errors
(cf. Boissière & Dours, 2000).
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SIBYLLE 2003

The project SIBYLLE has started at the Université Bretagne-Sud in Vannes, Brit-
tany in 2001; it was developed in the context of the PhD thesis of Igor Schadle
(Schadle, 2003).10. The initial goal was to realize two complementary commu-
nication aids within one system. The first one, SibyLettre, focuses on enhancing
the (binary) letter selection process by dynamically rearranging the keyboard
after every insertion, according to the left context (cf. sections 2.3.1 and 6.1.2).
In this way, the most probable letters appear first on the keyboard and can be
selected quicker.

Figure 2.9: User Interface of Sibylle 2003

The second component is SibyMot, a word predictor, based on a model
performing a partial syntactic analysis of the left context. It presents the pre-
dictions in a word window, right next to the editor (cf. Figure 2.9).

Fasty / EMU

The EU funded project Fasty has been realized at the Technische Universität,
Vienna (cf. Zagler et al., 2003; Beck et al., 2004; Trost et al., 2005); EMU is its
commercial offspring11. As for Profet (cf. 2.4.1), its interface only consists of a
word prediction list, which can be used with any text editing device and fol-
lows the actual position of the text cursor; words are selected via the function
keys.

The prediction engine is based on a combined model taking word sequence
statistics as well as part-of-speech and contextual information into account, the

10Since it is the precursor of the system presented in this work, our main intention here is to
distinguish the contributions of Igor Schadle from ours. A detailed description of the present
system will follow in chapter 6.

11http://www.is.tuwien.ac.at/emu/
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Figure 2.10: User Interface of Fasty/EMU

lexicon can also be modified to the user’s wishes. Being a European project,
its objective was to develop a generic approach, in which many European lan-
guages can be treated. Therefore, one of the aims was to deal with the problem
of compounding in northern European languages (cf. also section 3.5.4 later
on).

Aegys-PCA

An ongoing project is PCA (Plateforme de Communication Alternative), being
developed at the Université Aix-Marseille, France (Blache & Rauzy, 2007b,a).
It offers a text-based as well as an iconographic input system together with
different selection and scanning modes; text input is supported by a word pre-
diction module. This module includes a personal, auto-adaptive lexicon and
a morpho-syntactic predictor, which analyzes the current context. The icono-
graphic module comprises a reformulation system that constructs from the
sequence of selected icons a well-formed sentence.

2.4.2 Commercial systems

Since AAC became not only a research field but also an important market,
many companies have focused on the development of communication sys-
tems for the disabled. Several of these systems also include word prediction,
combined with various scanning techniques in order to facilitate text selec-
tion. Among them we find: Aurora Suite (Aurora Systems), Co:Writer (Don Jon-
ston Inc.), WordQ (QuillSoft), EZ Keys (Words+), WordPower (Prentke Romich
Inc.), DynaWrite (Dynavox / Mayer-Johnson) and the already mentioned EMU
(Fortec).

With the rapid development of mobile communication technologies, how-
ever, another, much larger market was found for word prediction techniques:



26 2.5. Evaluation aspects

They are becoming used for reduced keyboards such as the numeric keypads
of mobile phones or PDA touch screens. The already mentioned T9TM

pre-
dictive text software for example nowadays is installed in more than 2 billion
mobile phones world wide. As the development of mobile communication
devices is constantly growing, it can be expected that in the near future many
other mobile interfaces will include word prediction techniques in order to
speed up text entry.

2.5 Evaluation aspects

Considering the variety of approaches it becomes obvious that the standard-
ized evaluation of an AAC system is difficult. The main characteristic is cer-
tainly the enhancement of the communication rate, but it strongly depends on
the user’s cognitive and motoric capacities, which are obviously not compara-
ble.

As for many other examples of human-machine interaction there are two
major evaluation paradigms for an AAC system (cf. Garay-Vitoria & Abascal,
2006):

• Environmental evaluation (human testing): based on the observations
and the typing speed of several users

• User emulation: an emulation device enters a test corpus and thereby
calculates a standardized evaluation measure.

The advantages and disadvantages of these paradigms are well known.
On the one hand, human testing provides results that include the influence of
human factors like writing errors, fatigue, learning time etc. But these obser-
vations depend strongly on the recruited users, what restricts the evaluation
to individual case studies. Moreover, human testing is a very time-consuming
task, which makes it inappropriate for many optimization processes, where
sometimes a large number of parameters have to be tested.

On the other hand, while emulation is fast and yields a reproducible and
objective evaluation measure, it completely ignores human factors. It produces
only theoretical results which have to be interpreted with care.

Since an AAC system normally comprises several parts and features, some
aspects can be distinguished from one another in the evaluation. For exam-
ple, the key selection process can be evaluated separately from the keystroke
reduction strategy. However, since these methods obviously interact, we also
have to perform an environmental evaluation of the system as a whole, espe-
cially considering its usability and configurability.

In the following we will describe each of these aspects separately. Again,
the focus here is on text-based AAC systems; especially the quantitative eval-
uation methods presented cannot directly be applied to iconographic systems.
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2.5.1 Key selection

As already mentioned in section 2.3.1, cognitive aspects play an important role
in the key selection process. Theoretic estimations as well as user emulation
however also help to characterize the performance of a key selection method.
The theoretically optimal setting needs the least number of scanning steps,
i.e. the Average Scanning Distance (ASD) is lowest. Let us first consider the
simplest case, a linear scan operating on a keyboard with n equiprobable keys.
On the average we will need to scan half of the keys until the intended one is
reached; the ASD is then:

ASD =
n+ 1

2
(2.1)

For a line-column scan on a keyboard with l lines and c columns we get:

ASD =
l + 1

2
+
c+ 1

2
(2.2)

It can easily be shown that the lowestASD for a line-column scan is always
obtained when l = c (=

√
n), so a quadratic keyboard arrangement would be

optimal. It can also be shown that this generalizes to a block-wise scanning
procedure: The optimal block arrangement for d levels would be d

√
n keys per

minimal sub-block. The ASD is then:

ASD =
d
√
n+ 1
2

× d (2.3)

For example, if we arrange a keyboard of 64 keys in 3 block levels of 4×4×4,
the ASD would be 7, 5 scanning steps, which is the lowest possible value for
three levels.

The situation becomes a little more complex, if we give up the assumption
of equiprobability. We then have to determine the probability P (ki) and the
position D(ki) of every key ki (i = 1 . . . n). The Average Scanning Distance
(ASD) then is calculated as follows:

ASD =
n∑
i=1

P (ki)×D(ki) (2.4)

This formula can also be applied to dynamic rearrangements, we then
however have to redetermine the position D(ki) for each key after every se-
lection.

Table 2.2 gives an overview of the Average Scanning Distance for different
scanning modes and keyboard arrangements, based on a keyboard of 64 keys
(lower and upper case + blank + special characters). The estimations for the
frequency-based settings are taken from (Schadle et al., 2001) , the dynamic
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rearrangement is based on the SibyLettre letter predictor (for French).

scan: linear line-col. block-wise linear linear
arrangement: equiprob. equiprob. equiprob. frequency frequency

ordering: static static static static dynamic
ASD: 32,5 9 7,5 7,1 2,9

Sel. steps: 1 2 3 1 1

Table 2.2: Average scanning distance and selection steps for different keyboard
arrangements and selection modes

It can be seen in Table 2.2 that the arrangement as well as the selection
procedure have an important influence on the ASD, but it is also clear that
some of the gains shown here have to be traded off against additional cognitive
load, induced either by more selection steps or by a permanently changing key
arrangement.

2.5.2 Keystroke reduction

Several objective metrics have been proposed to assess the ability of a predic-
tion component to speed up a communication aid. Some of them are directly
related to human testing. Soukoreff & MacKenzie (2003) for instance use a
KeyStrokes Per Character measure, which is a good indicator for the rate of typ-
ing errors. Likewise, measures of communication speed (Koester & Levine,
1994) are strongly related to the motor and cognitive abilities of the recruited
users.

For the assessment by emulation Fazly & Hirst (2003) list a number of eval-
uation metrics, which are all closely related:

• Hit rate (HR): The percentage of times that the intended word appears
in the prediction list. A higher hit rate implies a better prediction perfor-
mance. It gives a clear idea of how much the system is able to aid the
user.

• Keystrokes until Completion (KuC): The average number of keystrokes
that have to be entered until the intended word appears in the prediction
list. Here, a lower value indicates a higher performance.

• Accuracy (ACC): The percentage of words that could be predicted (and
completed) before the user reached the end of the word.

• Keystroke Saving Rate (ksr): The percentage of keystrokes that could be
saved by using the predictor.

Fazly & Hirst (2003) showed that these measures strongly correlate, how-
ever the first three make the assumption of a word prediction technique, which
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is not the only possibility to reduce keystrokes (cf. language generation or abbre-
viation expansion, section 2.3.2).

The Keystroke Saving Rate on the other hand does not make any prior im-
position on the way of keystroke reduction; as its name implies, it simply de-
termines the number of keystrokes that could be saved by applying a given
technique. This makes it probably the most intuitive one of the measures de-
scribed, and it is most commonly applied to evaluate writing aids (cf. Carl-
berger et al., 1997; Lesher et al., 1999; Trost et al., 2005; Trnka et al., 2006, among
others). The ksr is formally defined as follows:

ksrn =
(

1− kred
kall

)
· 100 (2.5)

with kred, kall being the number of keystrokes needed on the input device
when typing a message with (kred) and without reduction method (kall = num-
ber of characters in the text that has been entered).

If the ksr is calculated for a technique using a prediction list (as in most
word prediction approaches), we have to specify its number of items n, be-
cause the ksr depends obviously on the list’s size. The more words are pre-
sented the better the ksr will be, however the cognitive load on the user rises
as well. To find out about this relationship we have calculated the ksr using
our word predictor for sizes of the prediction list from 1 to 20 on a French
newspaper corpus (cf. section 4.4); the results are shown in Figure 2.11. As the
curve in Figure 2.11 clearly shows, the dependency between ksr and list size
is non-linear: whereas we observe an increase of more than 13% from ksr1 to
ksr5, (ksr1 = 44, 4%; ksr5 = 57, 9%) the gain between ksr5 and ksr10 is only
3, 6% (ksr10 = 61, 5%). For this reason, a list size between 3 and 7 items seems
a reasonable trade-off between saving rate and cognitive load.
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Figure 2.11: Keystroke saving rate against prediction list size
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As in most other works applying ksr (cf. Trost et al., 2005; Trnka et al., 2007),
the keystroke saving rates presented throughout this document are based on
the assumption that one additional keystroke is required to jump to the word
selection list and that a space is automatically inserted afterwards. This is a
rather hypothetic assumption, because it implies that a predicted word can be
selected just as a normal character. However, in many systems the prediction
list is separate from the keyboard, which means that actually two selection
steps are needed in order to select a word. However, since this is an intrinsic
property of the system under consideration, the ksr is defined with one addi-
tional keystroke.

The flattening of the curve in Figure 2.11 suggests that there is an upper
limit for the ksr. With respect to a word prediction approach one (theoretical)
limit is obvious: Since at least one selection per word is needed, the minimum
number of keys selected equals the number of words. The average word length
in English (and French) is 4, 5 letters, to which the (automatically inserted)
empty space can be added. This gives us a theoretical ksr maximum of (1 −
(1/5, 5)) × 100 = 81, 8%. German words are slightly longer (average length =
5, 3), so the maximal ksr for German is 84, 1%.

State-of-the-art word predictors arrive at a ksr5 of approximately 50%
to 55% (cf. Copestake, 1997). Interestingly, experiments have shown that
keystroke savings of human guessers lie in the same range (cf. Lesher et al.,
2002). Even though there appears to be room for improvement, it seems in-
creasingly difficult to go beyond this empirical limit. In the first part of the fol-
lowing chapter we will return to this question from an information-theoretic
point of view.

Another question that arises with regard to such a theoretic measure is if an
improvement in ksr really translates into an enhancement of the communica-
tion rate of real users. Some researchers have questioned this (cf. Anson et al.,
2005). In an experimental study however, Trnka et al. (2007) could show that
advanced prediction methods have a clear positive effect on communication
rate with respect to no prediction (59,9% improvement), but also to simple pre-
diction, based on a word list (44,4% improvement). In this light it seems worth-
while to put more effort in the development of advanced prediction methods
for AAC systems.

2.5.3 Environmental evaluation: Usability

While it is certainly reasonable to use the above mentioned emulation-based
measures to optimize the components of an AAC system, it is also essential
to consider the system as a whole. Research in human-computer interaction
has shown for a long time that the design of a user interface is the crucial fac-
tor for the resulting performance of the user; countless aircraft accidents for
example can be related to misestimations in the cognitive preconditions of hu-
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man users12. Therefore, the notion of usability has come to the fore in the past
years; standardized methodologies and evaluation patterns were developed
in order to determine this rather vague property of a man-machine system (cf.
for example the ISO 9126 standard13).

However, as these standardized approaches also presuppose a rather stan-
dardized user, they are only partially applicable to an AAC system. AAC users
surely have common cognitive abilities and demands, however, as every med-
ical condition is different, it is not obvious to define common criteria of usabil-
ity for such a system (cf. Boissière & Dours, 2002).

A further difficult aspect with respect to user-centered testing of an AAC
system is the way of assessment: While standard usability tests largely rely
on user feedback and standardized interviews, this is – for obvious reasons –
not easily applicable to AAC users. Moreover, while researchers make a lot of
assumptions about the communication needs of these persons, only few efforts
aimed to make them explicit, such as the French project ESAC-IMC, in which
we were also partly involved (cf. section 6.4).

Since users and their requirements are so various, only one a priori criterion
for the quality of an AAC system can be defined, namely its degree of config-
urability: The more configuration possibilities, keyboard settings and selection
modes a system offers, the better it will suit the abilities and preferences of its
respective user.

In the following chapters the major means of evaluation will be the
keystroke saving rate (for the above mentioned reasons of objectivity and re-
producibility), however we hope to have made clear that this cannot be the
only criterion. The ”real-life” evaluation of the AAC system as a means of
communication remains indispensable; we will return to this aspect in chapter
6.

2.6 Conclusion

The chapter presented the field of Alternative and Augmentative Communica-
tion. This discipline aims to provide communicative facilities to persons who
are unable to speak or to communicate otherwise. The main challenge of AAC
is to enhance the extremely reduced communication rate of such persons. In
the past 30 years a considerable number of AAC systems, implementing var-
ious methods to support the user’s communication, have been proposed. In
most of these approaches two major strategies for accelerating text input can
be distinguished: (i) Improving the key selection process, and (ii) reducing
the number of keystrokes necessary to insert a message. Key selection meth-
ods can be evaluated by measuring the average scanning distance (ASD), the

12For a comprehensive introduction to this subject cf. Hawkins (1993)
13http://www.issco.unige.ch/projects/ewg96/node13.html
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most important evaluation measure for keystroke reduction techniques is the
keystroke saving rate (ksr). An often neglected factor in the evaluation of AAC
systems is however also usability. Especially since AAC users have rather het-
erogeneous demands it is crucial to design an AAC system as configurable as
possible.



Chapter 3

Prediction and language
modeling

It is this resolution of uncertainty
which is the aim and outcome of communication

JOHN R. PIERCE
(Symbols, Signals and Noise, 1961)

Whereas the last chapter focused on the application side of AAC, this part is
supposed to provide the theoretical foundations of the models and techniques
on which the major AAC approaches are based. The first section (3.1) aims
to consider communication and language from an abstract perspective and to
answer the question of how prediction can be achieved at all. Basic notions
of probability estimation and information theory are also explained. The fol-
lowing two sections (3.2 and 3.3) outline statistical language modeling, a field
of research which has become very important not only for AAC but for most
other areas of natural language processing. In section 3.4 more practical issues
arising from the application of language models (like storage and parameter
estimation) are discussed. The last two sections then present two other families
of language models, those based on linguistic knowledge (3.5) and maximum
entropy models (3.6).

3.1 Information and redundancy in natural language

3.1.1 Communication as a discrete noiseless system

Human language can certainly fulfill many aims or intentions; the most obvi-
ous one however is to transport information. In this regard it seems at first as-
tonishing that it should at all be possible to predict any element of a language
signal on the sole basis of what has already been said, because this means that

33
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the predicted element is superfluous or redundant, it does not carry informa-
tion. But why should humans spend so much effort and time on transmitting
redundant symbols? The commonly given answer is that redundancy protects
the language signal from possible errors during transmission (cf. Pinker, 1994);
therefore, even though a piece of the message is distorted or lost, it can still be
reconstructed.

Even though its doubtful connotation, redundancy is a vital means of every
natural language as well as of most artificial languages. And it seems to be the
key concept for understanding the prediction of a language signal and for the
development of optimal prediction algorithms. But how can this rather fuzzy
and invisible concept be characterized and quantified?

In order to understand redundancy it is helpful to first get a better un-
derstanding of its antipode ’information’ and the nature of communication
itself. The landmark event for the formal description of communication was
the development of communication theory (later also called information theory)
by Claude Shannon at the Bell Laboratories in 1948 (cf. Shannon, 1948). Shan-
non describes a communication system in its most general form: (i) An infor-
mation source (or sender) selects a message bearing the intended information
from a set of possible messages. (ii) This message is encoded into a form mak-
ing it suitable for transmission. (iii) The encoded message is transmitted via a
communication channel (a medium) and arrives at its destination (or receiver),
who has a decoding device in order to translate the message into an internal
representation (iv). A schematic overview of this process is given in Figure 3.1.

Information source DecoderEncoder Destination
Message

Communication channel

Figure 3.1: Description of signal transmission on a noiseless channel (from:
Shannon, 1950)

Following this model, communication can only succeed if two precondi-
tions are fulfilled: First of all, the form of encoding has to be suitable for
the given channel and secondly the transformation performed at the encod-
ing step has to be the exact inverse of the operations performed at decoding,
i.e. the encoding standard has to be known by both communication partners.1

According to the kind of message transmitted, communication systems
can be classified into three main categories: discrete, continuous and mixed.
Whereas in a discrete system, both the message and the transmitted signal con-
sist of a sequence of discrete symbols, in a continuous system they are treated

1While violations of the first condition are quite rare, the world is full of violations of the
second, especially if someone who does not speak Mandarin tries to order a meal somewhere
in rural China.
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as continuous functions, and the mixed system makes use of both kinds of
representation.

And yet another aspect has to be characterized: Is the signal on its trans-
mission affected by noise or not? If noise can alter or mutilate the message on
its way, the system has to provide a means of restoring the original message.
But for the moment let us consider the most simple case: a discrete, noiseless
system:

A discrete information source can emit a message by generating a symbol
sequence from a finite set of s (discrete) symbols. A first naive guess would be
that the amount of information to be transmitted now depends on the number
of different possible symbols, i.e. transmitting one of two symbols should im-
ply less effort than transmitting one out of 1.000. This becomes especially clear
if we convert n into a binary format: the outcome of two possible symbols can
be coded by one bit, whereas we need 10 bits to code one out of 1.000 symbols
(log21000 ≈ 9, 97). Shannon’s big leap was to show that the transmission effort
does not depend on the number of possible symbols but on their probability
distribution. He therefore introduced a new term which he borrowed from
thermodynamics: entropy, which describes the amount of a thermodynamic
system’s energy to do work.2 Shannon defines the entropy H of a single vari-
able X (x being the possible outcomes of X) as follows:

H(X) = −
∑
x∈X

p(x)× log2p(x) (3.1)

There are several ways to understand this measure: it can be seen as the
average uncertainty about the outcome of a given event. Mostly however
it is considered as the amount of information that is transmitted in a com-
munication process. To illustrate this by a short example, let us imagine a
variable with 8 different outcomes (e.g. sending one out of 8 symbols). If
all outcomes are equiprobable, the entropy gives us the expected value of 3
bits (H = −

∑8
1

1
8 × log2 (1

8) = − log2
1
8 = 3). However if p1 becomes more

probable than p2, . . . , p8, the entropy gets smaller and smaller. Table 3.1 shows
different probability distributions and the respective entropy over p1, . . . , p8.

Whereas in the equiprobable case (1) we have to transmit 3 bits in order
to report the outcome, only 0,56 bits need to be transmitted in case 4, because
most of the time the outcome is the same (p1). For this case one could design
a kind of emergency code, that transmits only if the outcome is not p1. This code
would transmit in only 7% of the cases, so the average number of bits over all
outcomes is highly reduced.

However, measuring entropy does not (directly) help constructing an op-
timal code, it has to be understood as the lower bound for the number of bits

2Note that the term of entropy has also been defined in statistical mechanics, where it de-
scribes the number of microscopic configurations that result in the observed macroscopic de-
scription of the thermodynamic system. The definition of entropy by Ludwig Boltzmann has
strong similarities with the information-theoretic definition: S = k × logW .
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Dist. p1 p2 . . . p8 Entropy
1 1

8
1
8 3

2 0,3 0,1 2,85
3 0,65 0,05 1,92
4 0,93 0,01 0,56

Table 3.1: Entropy for different probability distributions

that have to be transmitted in order to pass a message. The most common
strategy for creating an optimal code is to assign short bit sequences to fre-
quently used symbols and longer sequences to symbols of lower probability.
One of the most efficient encoding strategies, developed by Huffman (1952),
does exactly this, and in human language we find the same idea: Usually the
most frequently used words are very short, whereas less frequent words are
longer.

So far, the entropy is defined for only one variable (i.e. one symbol is trans-
mitted). But most of the time we want to transmit symbol sequences. Calculat-
ing the entropy of a symbol sequence (Xn

1 = x1, x2, . . . , xn) is straightforward:

H(Xn
1 ) = −

n∑
1

p(xn1 ) log p(xn1 ) (3.2)

We can then calculate the entropy of a single symbol (entropy rate) by di-
viding it by n:

Ĥ(Xn
1 ) = − 1

n

n∑
1

p(xn1 ) log p(xn1 ) (3.3)

But this would only give us a measure for sequences of length n; if we
consider a language, we would not want to limit a communication process to
n words; the length of our sequences should be infinite.

If we define a language L (in a very broad sense) as a symbol sequence of
infinite length, the entropy of that language is calculated as:

H(L) = − lim
n→∞

1
n

∑
X∈L

p(x1, x2, . . . , xn) log p(x1, x2, . . . , xn) (3.4)

Conditions become easier if we conceive of all possible sequencesX as only
one that is long enough that it comprises all others. This is the underlying idea
of the Shannon-McMillan-Breiman theorem, but it requires two assumptions:

The information source generating that language has to be both station-
ary and ergodic. Stationarity means that the probability assigned to any sub-
sequence does not change over time, i.e. it does not matter at what point we
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consider a sub-sequence, because its dependency on past symbols is limited.
Ergodicity refers to the condition that the statistical properties of any two sub-
sequences be the same, i.e. that we find on the average the same number of
symbols xi in each of them.

The Shannon-McMillan-Breiman theorem then defines the entropy of a lan-
guage L using the infinite sequence of symbols (x1, x2, . . . , xn) as follows:

H(L) = − lim
n→∞

1
n

log p(x1, x2, . . . , xn) (3.5)

So far we have assumed that we have full knowledge of the probability
distribution from which a sequence is produced. But in natural language this
is rarely the case. Instead we apply a model m to approximate the true prob-
ability distribution. We then can define the cross entropy for a given model m
simply by replacing the true probability distribution p by probability estimates
Pm as provided by m:

H(P,m) = − lim
n→∞

1
n

logPm(x1, x2, . . . , xn) (3.6)

Of course, this does not help much by itself, but it can be shown that for
any model m approximating p the entropy determined over m is an upper
bound for the real entropy, i.e. H(p) ≤ H(P,m).

If we wish to determine the cross entropy of a given language (in its broad
sense, s. a.) with respect to a model, it is usually quite inconvenient to work
with an infinite symbol sequence. We therefore define an approximation to
cross entropy by setting the symbol sequence to a finite length N :

H̃(L,m) = H(XN
1 ,m) = − 1

N
logPm(x1, x2, . . . , xN ) (3.7)

This is the formula, which is usually referred to when people speak of en-
tropy. Since true cross entropy cannot be determined they calculate an approx-
imation to cross entropy (i.e. with respect to a model) on a symbol sequence of
finite length XN

1 .

With the notion of cross entropy, based on a model m, we are finally able
to define (information-theoretic) redundancy. The model with the highest cross
entropy for a language L is the one assuming equal probability for every sym-
bol (= m0). The cross entropy of such a model, using an amount of s symbols,
is always:

H(XN
1 ,m0) = − 1

N
log pm0(

1
s
× 1
s
. . .︸ ︷︷ ︸

N times

) = −N
N

log pm0(
1
s

) = log s (3.8)

So, the cross entropy of our equiprobable modelm0 is log s, and every other
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model can be compared to this baseline. The redundancy R over a test se-
quence XN

1 , given a model m is then simply the difference (in percent) of the
model’s entropy with respect to the maximum entropy over XN

1 :

R(XN
1 ,m) = 100− H(XN

1 ,m) · 100
H(XN

1 ,m0)
(3.9)

Cross entropy is also the basis for another (even more) popular measure,
which is nowadays applied everywhere in statistical NLP: Perplexity (PP) is
simply defined as the logarithmic inverse of this approximative cross entropy:

PP (XN
1 ,m) = 2H(XN

1 ,m) (3.10)

= Pm(x1, x2, . . . , xN )−
1
N

= N

√
1

Pm(x1, x2, . . . , xN )

= N

√√√√ N∏
i=1

1
Pm(xi|x1, . . . , xi−1)

The perplexity measure can also be understood as the inverse geometric
average of the single probabilities assigned by our model m to each symbol of
the test sequence. Another way to consider perplexity is the average difficulty
of a guessing task. A perplexity of 100 means that on the average we would
have to guess between 100 distinct symbols, which is obviously easier than
guessing between 1000 symbols. A model achieving a lower perplexity on a
(sufficiently large) test sequence is therefore a better approximation to the true
probability distribution and likewise a better predictor.

It is a strange matter of fact that people prefer to work with perplexity,
even though cross entropy seems to correlate better with many performance
measures in NLP tasks (cf. Goodman, 2001; Manning & Schütze, 1999). One
reason might be that this ”inverse average probability” is more intuitive to un-
derstand, another might be that many research efforts are better to sell using
perplexity: A perplexity reduction of 50% corresponds to a cross entropy re-
duction of only 1 bit, so if someone intends to ”improve results by 50%”, it is
much easier to base this statement on perplexity.

3.1.2 Shannon game playing

So far, we have only regarded a particular form of symbol sequences, namely
those of which the source is stationary and ergodic. If we want to apply the
notions made so far to natural language, we have to assume it to be stationary
and ergodic as well. This is unfortunately not the case: Natural language is not
stationary, since the probability of a word or a phrase can depend on events
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of arbitrary distance. And whereas the total of all speakers and writers of a
given language at a given time could be regarded as an ergodic source, it is
hardly possible to determine a truly ergodic subset of it,3 moreover natural
language is subject to constant changes in usage. For example, it is estimated
that on the average every day 20 new words (true neologisms) can be found in
German newspapers.4, and it goes without saying that no model can provide
the statistical properties for future words.

So, the question arises whether the constructs introduced above are useless
when applied to natural language. Let us therefore (similar to Shannon, 1948)
regard some approximations to ”real language”, for which the conditions of
stationarity and ergodicity hold:

The probabilities have been estimated on English newspaper corpora (The
Guardian, 1997-1998, 49 million words), the size of the vocabulary is app.
133.000 words (cf. also section 4.4). A 0-order word approximation does not
apply any statistical assumptions at all, every word occurrence is considered
equiprobable and independent. A 1-order approximation takes into account
the single word probabilities (with respect to their frequency in a given cor-
pus). A 2-order approximation estimates probabilities for sequences of two
words (bigrams), a 3-order approximation considers sequences of length 3 (tri-
grams), and so on.

Order Example Entropy
0 hurried than furnishing hat acknowledge exit sumptuary far 17,02
1 representing speedily and is good a apt or come can the here 9,6
2 the old man and in frontal attack on an english writer that the 7,29
3 there are no tables which work equally well as either black 6,85

Table 3.2: Probabilistic approximations to English of order 0-3

Two important aspects can be observed in Table 3.2: First, whereas the 0-
order approximation constitutes an arbitrary sequence, the approximations of
higher orders become more and more similar to real English. Especially when
we consider the 3-order approximation, which constitutes a nearly grammat-
ical sentence fragment, it seems admissible to treat natural language as a sta-
tionary and ergodic process even if it is not. Secondly, we can observe that
the cross entropy drops considerably by nearly 60% from 17,02 (=log2133.000)
to 6,85 bits per word. It therefore seems that with the rising order of an ap-
proximation we obtain a better and better estimate of the true entropy of a
language.

This was also Shannon’s idea, when he designed an experiment in order to
estimate the entropy of English (Shannon, 1951). He let human subjects guess
a random text snippet letter by letter, and he recorded the number of trials the

3Remember that the statistical properties (e.g. the relative word frequencies) must remain
the same.

4Cf. http://www.wortwarte.de
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subjects took to guess each letter. A typical test result might have looked as
follows (from: Shannon, 1950):

(A) THERE IS NO REVERSE ON A MOTORCYCLE ...
(B) 1115112112111517111213212271111411111 ...

Shannon remarked that the ”number of guesses”-sequence in line B can
be seen as a translation of the real text, therefore the entropy of line B should
be the same as that of line A. To get an estimate of the relationship between
the number of trials and the size of the context (number of characters known),
he transformed his guessing results (all the lines B) into a large table with the
numbers of trials as lines and the number of characters known as columns. In
this fashion he could determine an upper and a lower entropy bound for each
approximation of rank N (N being the number of letters known). If 100 char-
acters (of an alphabet of 27 characters) were known (N = 100) he measured a
per-letter entropy of 0,6 (lower bound) to 1,3 bits (upper bound).

This famous experiment, which is nowadays known as the Shannon game,
was repeated in some variations several times. Cover & King (1978) for exam-
ple altered the experiment by having the subjects place bets on each character
instead of repetitive guessing. Interestingly they arrived at the same estimate
of around 1,3 bits per symbol.

If we take the average length of English words (4,5 letters) as a basis, we
arrive at an upper bound for the per-word entropy of 5,85 bits. This seems
to be in accordance with our cross entropy estimates in Table 3.2. The 3-gram
approximation yielded a cross entropy of 6,85, which is only one bit higher. It
therefore seems that such a model is already able to capture a large amount of
the stochastic properties of natural language (of English at least).

3.1.3 Information theory and AAC

Some readers might ask now in what sense ergodic processes and entropy
bounds relate to an AAC system, and indeed, this connection ought to be
clarified. First of all, it is helpful to consider the role of an AAC system in
a communication process. As explained in chapter 2, a speech and motion
impaired person often has full mental capacities; considering Shannon’s com-
munication scheme (Figure 3.1) we can state that the source of the information
is unaffected. However, the encoding process is disrupted, because the speech
organs (or limbs) which transform the information into a message are unus-
able, the message cannot be encoded properly. This is point where an AAC
system comes into play; it represents a workaround of the normal encoding
device. It receives a reduced signal and tries to find a proper encoding; the
proposed message (or message part) is presented to the user, who compares
the encoded message with the intended signal. If they match, the user pro-
ceeds with the signal transmission, if not, she or he has to modify the proposed
encoding by further specification. When completed, the message is then trans-
mitted via an auditive (by speech synthesis) or a visual (by text) channel to the
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destined communication partner. Figure 3.2 gives a schematic overview of an
AAC-supported communication process.

Information source DecoderEncoder Destination

AAC device

Reduced signal

Comparison

x

Message

Message

Communication channel

Figure 3.2: An AAC-supported communication system

In this light it becomes also clear that the most efficient AAC system is the
one that needs the least input from the user in order to encode the full message;
when the reduced signal is as free from redundancy as possible, the user effort
is maximally reduced.

The previous parts have shown that there is a theoretical limit to this re-
duction, and it was also explained that an approximation to this limit can be
achieved by the creation of a model that takes the probabilistic properties of
the expected signal into account. Shannon showed that the capacities of such
a model depend on the amount of contextual information exploited: The more
of the context is considered the better the model can predict the reduced sig-
nal. So, we can claim that a word predictor plays an abstract version of the
above described Shannon game.

The notion of signal reduction reminds strongly of an AAC evaluation
measure that was already presented in the last part of the previous chapter (cf.
2.5.2): the keystroke saving rate. The question that arises here is how keystroke
savings and the terms of cross entropy or perplexity are interrelated. Both
measures describe signal reduction (or redundancy), however cross entropy
is based on the probabilistic properties of the underlying prediction model,
whereas keystroke savings are empirically determined.

To get a better understanding of this relation, keystroke savings as well as
cross entropy and perplexity were determined for a series of 43 French corpora
(from different newspaper, literature, e-mail and transcribed speech corpora,
each of 2000 to 9000 words in length). The prediction was performed by a 4-
gram model5 trained on 44 million words from French newspaper (Le Monde,
1998-1999), the size of the vocabulary was 141.078 words (cf. also 4.4). To
reduce further influences as much as possible, keystroke savings were based
on a word list of length 1. Table 3.3 shows the correlation coefficients of the
keystroke savings with each of the information-theoretic measures.

5The model uses back-off and modified Kneser-Ney discounting (Goodman, 2001) and is re-
duced by Stolcke pruning (θ = 10−7) (Stolcke, 1998). These terms will be explained in the
following sections (3.3, 3.4.2).
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ksr1-cross entropy ksr1-redundancy ksr1-perplexity
intra-register only -0,868 0,868 -0,784

(8 corpora)
all -0,678 0,678 -0,392

(43 corpora)

Table 3.3: Correlation between keystroke savings and different information
theoretic measures

The correlations were calculated separately for the 8 intra-register test cor-
pora (i.e. corpora of the same register as the training corpus, here newspaper),
as well as for all corpora. Three major observations can be made from the re-
sults. The first is trivial: Since redundancy can be derived by linear scaling
from cross entropy, their correlations with ksr have the same absolute value.
Secondly, we observe weaker correlations for perplexity than for cross entropy.
This shows once again (as mentioned in section 3.1.1 and also discussed by
Goodman (2001)) that perplexity, despite its high popularity, may be not the
most suitable performance measure for an AAC system as for other NLP tasks.

Thirdly, we remark an important difference between the results for the
intra-register data and all corpora. This is most probably due to the fact that
the non-journalistic corpora do not exhibit the same statistical properties as the
data on which our model is based, i.e. they represent an even less ergodic in-
formation source (cf. 3.1.1).6 The more the styles of the corpora differ from the
style of the training data, the less precisely our model can estimate the correct
probabilities.

All in all, we can state that there is an important correlation between
keystroke savings and cross entropy, but it is not perfect. On the one hand
this is due to the just mentioned violation of the ergodicity constraint, which
affects the model quite strongly, and on the other hand we have to take into
account the way word prediction is carried out: In a standard left-to-right set-
ting (i.e. when words are predicted based on the left context) some redun-
dancy might not be accessible for prediction. This has already pointed out
by Copestake (1997): Consider an artificial language consisting of equiproba-
ble 4-letter words that all start with the common prefix ’zzz’ (i.e. zzza, zzzb, ...,
zzzz). It is obvious that this language is at least 75% redundant, however words
cannot be predicted until the prefix has been inserted. One might argue that
natural language does not work like this, but the problem does become visi-
ble: For example when one tries to predict inflected French or German verbs
(e.g. consider the inflected forms of demander (’to ask’): demand-e, demand-es,
demand-ons, demand-ez, demand-ent, demand-é).

A conclusion from these considerations is that the best way to evaluate

6Of course, the texts of the intra-register data are not ergodic either. The deviations are
however less important.
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the performance of a probabilistic model remains an extrinsic one, i.e. one
which takes the specific task into account (also called ’in vivo’ evaluation; cf.
Spärck-Jones & Galliers, 1996). Intrinsic measures like cross entropy can be
very helpful in optimization, since it can be assumed that a model yielding
a lower cross entropy than another one will also yield better performance re-
sults, but extrinsic measures (like ksr) will still be more precise for the given
task at hand.

3.2 Stochastic language models - Background

So far a family of models was presented that all make the same assumption,
namely that the occurrence statistics of a symbol depends on a limited num-
ber of other symbols (i.e. that the context to be taken into account has finite
length). The idea to constrain the context length in order to calculate symbol
probabilities is attributed to Andrei Markov’s work, who in the beginning of
the 20th century developed the mathematical basis to predict upcoming sym-
bols from symbol chains of fixed length (cf. Markov, 1913); for this reason the
just mentioned assumption as well as the whole class of such processes today
bear Markov’s name.

It was also mentioned in the previous section that the Markov assumption
does not hold for natural language. There is no doubt that the structure of nat-
ural language cannot be described as a finite-state Markov process; our own
intuition already tells us that every sentence that we utter has a deeper struc-
ture than a simple linear left-to-right alignment of words. Relative clauses can
be recursively embedded into other relative clauses and there is no constraint
on how many (attributive) adjectives can be attached to a noun. Moreover,
there is no evident relation between the grammatical correctness of a sentence
and its frequency in a corpus of any given size. For example here may be the
first and only time to see the 2-gram ”vanilla chair”, but, apart from the fact
that nearly everything can be shaped by vanilla icecream, it can also refer to
the chair’s color or (figuratively) to a plain and simple chair without further
scrolls. It is a lively and crucial property of natural language that an expres-
sion which has never been seen or uttered before, can be understood (and per-
ceived as grammatical) without any effort, and it is obvious that this cannot be
modeled by a Markov process.

This observation was already made by Noam Chomsky in his seminal pa-
per from 1956, where he convincingly shows that a natural language expres-
sion has to be described by other means than by a Markov model. He proposes
(and formalizes) the notion of a phrase structure grammar, consisting of a set
of rules that are iteratively transformed in order to derive all possible sentence
structures for a given language (and only these). He also describes the expres-
sivity of a (formal) language by the kind of rules from which they are gener-
ated. In this way he creates a hierarchy of language types, of which the most
restricted ones are the languages which can be generated by a Markov source
(type 3 or regular languages), and the most general ones are those which can be
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generated by a Turing machine (type 0 or recursively enumerable languages). The
structure of natural language can best be described by a type 2 (context free)
or type 1 (context sensitive) formalism, but simply not by a type 3 grammar
which can only describe linear dependencies.

Chomsky’s formalizations can be seen as the founding stone of modern
linguistics, and they had an important influence on theoretical computer sci-
ence as well. Since Chomsky’s first observations (cf. Chomsky, 1956), a large
number of elaborate grammar formalisms and linguistically motivated mod-
els have been developed. Apart from Chomsky’s works on Generative Gram-
mar, we find very elaborate formalisms such as the Lexical-Functional Grammar
(LFG; cf. Horn, 1983; Bresnan, 2001), Head-Driven Phrase-Structure Grammar
(HPSG; cf. Pollard & Sag, 1994) or Tree-adjoining Grammar (TAG; cf. Joshi
et al., 1975).

Considering their descriptive adequacy one would expect these for-
malisms to describe language much better than Markovian approaches. How-
ever, we have to recognize the disturbing fact that more than 50 years after it
has been shown that natural language is not regular many successful models
in natural language processing are still based on Markov-style formalisms (cf.
Rosenfeld, 2000; Goodman, 2000) or at least combine them with other tech-
niques. N-gram models can be seen as the working horse of a wide range of
NLP applications, especially in those domains that deal with language gener-
ation (in its broadest sense), for example in:

• Speech recognition, (cf. Jelinek, 1990; Hruska et al., 2000)

• Machine translation, (cf. Brown et al., 1990; Brants et al., 2007)

• Optical character recognition, (cf. McQueen & Mann, 2000)

• Spelling correction, (cf. Kukich, 1992; Brill & Moore, 2000)

This puzzling mismatch between theoretical conviction and applicative
success has not yet been sufficiently discussed, but it is probably due to a dif-
ference in perspectives: linguistic theories mostly care to decide grammatical-
ity (i.e. model linguistic competence). From this perspective a given structure
is considered as either grammatical or ungrammatical, and not as more or less
probable.

NLP applications on the other hand try to model the language performance
of humans, where structural errors occur frequently; at the same time many
actually grammatical constructions do not occur, due to cognitive limitations
(e.g. normally not more than three relative clauses will be nested). Perfor-
mance issues have long been treated as the ugly duckling in modern linguis-
tics; notions of probability have been regarded as useless with respect to the
description of language structure.7 However, it has to be acknowledged that

7(cf. Chomsky, 1969, p. 57): ”It must be recognized that the notion of a ’probability of a
sentence’ is an entirely useless one, under any interpretation of this term.”
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many linguistic phenomena can only be described (and explained) by refer-
ring to probability; structures can be unusual or preferred, and determining
grammaticality does not help in this distinction.

Apart from this paradigmatic gap, another reason for the tremendous suc-
cess of stochastic language models is their underlying simplicity. Compared
to many linguistic theories, whose degree of complexity is not only intellectu-
ally challenging but also poses computational problems, it seems very easy to
build a model from nothing but the frequencies of word sequences. N-gram
frequencies (once they are determined on a training corpus) make the calcu-
lation of a word’s probability, given a context, directly available. We simply
need to divide the number of times we have seen the context by the number
of times we have seen the context followed by the word. This first (and quite
intuitive) way to estimate word probabilities is called Maximum likelihood es-
timation (MLE), and it is formalized as follows (C(w1, . . . , wm) refers to the
frequency of sequence w1, . . . , wm in a given training corpus):

PMLE(wi|w1, . . . , wi−1) =
C(w1, . . . , wi)
C(w1, . . . , wi−1)

(3.11)

The question that arises immediately from this equation is how long the
size of the context should be. As already explained in section 3.1.2 the accu-
racy of the probability estimate grows with the length of the context that we
take into account. This can be determined by the reduction of cross entropy as
well as by performance-oriented measures such as the keystroke saving rate. The
numbers in Table 3.4 have been calculated using models of a context size from
0 to 3 words that have been trained on the already mentioned French newspa-
per corpus of 44 million words from Le Monde (vocabulary size: 141.078 types),
the test corpus comprised 58.000 words.

ksr1 ksr5 cross entropy redundancy perplexity
0-gram 10,4% 20,3% 17,1 0% 141078
1-gram 29,3% 46,3% 9,6 43,7% 795,2
2-gram 41,5% 55,7% 7,3 57,1% 162,5
3-gram 43,8% 57,6% 6,9 59,8% 116,3
4-gram 44,3% 57,8% 6,8 60,4% 109,7

Table 3.4: keystroke savings, cross entropy, redundancy and perplexity for n-
gram models of varying n

The results displayed in Table 3.4 confirm Shannon’s observations (cf.
Shannon, 1951), and they are in straight accordance with the results given of
Goodman (2001), who tested models for n up to 20: the larger the context the
lower the cross entropy of the sequence.

However, as the context size grows bigger we also face an increasing prob-
lem of data sparsity. For a vocabulary of size swe have to estimate frequencies
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for s unigrams, s2 bigrams, s3 trigrams and s4 four-grams, most of which will
never occur in even the largest imaginable corpora8.

So, many of the frequencies on which our probability estimation is based,
are zero, especially when we want to calculate a model of higher n. But what
happens if we apply the maximum likelihood estimate to calculate a word’s
probability when this word has never occurred with the given context (re-
member the ”vanilla chair” example)? The MLE assigns zero probability to
all events that have not been seen in training; as its name indicates, it ”maxi-
mizes” the likelihood for seen events, it adapts perfectly to the training data.
But this is not what we want, because we will not work on the training corpus
but on foreign data, and there a word might still be able to occur after a given
context, even though it was never seen before. Estimating the probability of
unseen events is however a non-trivial task, and many sophisticated methods
have been developed to achieve this. Modifying the observed estimates in or-
der to achieve a more appropriate probability distribution is usually referred to
as discounting or smoothing. While the term ’discounting’ indicates that the real
counts are reduced in favor of unseen word sequences, ’smoothing’ refers fig-
uratively to the shape of the probability distribution graph which is rounded
off by such methods.

The following section introduces a number of smoothing (or discounting)
methods, starting from the first considerations (e.g. Laplace smoothing) to
the state of the art in this domain, which is currently assumed by Kneser-Ney
smoothing.

3.3 Treating unseen events - Smoothing methods

The probability estimation for unseen events has been shown to be a crucial
factor in statistical language modeling. In the last 20 years an important num-
ber of smoothing paradigms have been developed, such as those proposed by
Jelinek & Mercer (1980), Katz (1987), Ney & Essen (1991), Witten & Bell (1991)
or Kneser & Ney (1995), of which only a few will be presented here. Longer in-
troductions to this subject can be found in the language modeling chapters of
(Manning & Schütze, 1999, ch. 6) and (Jurafsky & Martin, 2000, ch. 6); detailed
descriptions and empirical comparisons are given in the works of Chen and
Goodman 1999; 2001. To simplify notation all smoothing schemes are given
for a trigram model, but the formulas are easily adaptable to models of higher
or lower n.

8The (to my knowledge) currently largest n-gram models have been calculated by the Google
machine translation group; they are trained on web corpora of up to two trillion (i.e. 2 × 1012)
tokens and comprise 1- to 5-grams, (cf. Brants et al., 2007). To be found in the LDC Corpus catalog:
http://www.ldc.upenn.edu/Catalog/.
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3.3.1 Additive discounting

The oldest solution to deal with unseen events in statistics can be related to
the works of Pierre-Simon Laplace in the beginning of the 19th century. Ac-
cording to Laplace’s law, all counts are simply raised by one, before they are
transformed into probability estimates, as can be seen in the following equa-
tion:

PLaplace(wi|wi−2wi−1) =
C(wi−2wi−1wi) + 1
C(wi−2wi−1) + |V |

(3.12)

where |V | is the size of the vocabulary. This technique is simple and rather
intuitive, but can alter the original probability distribution quite strongly, espe-
cially if we have a high number of unobserved sequences. In practice, Laplace
smoothing does not yield good results, it over-smoothes the probability distri-
bution.

A first solution to this problem was proposed by Lidstone (1920), who gen-
eralized Laplace’s formula, so that not exactly one, but smaller (positive) val-
ues δ could be added:

PLidstone(wi|wi−2wi−1) =
C(wi−2wi−1wi) + δ

C(wi−2wi−1) + δ|V |
(3.13)

A commonly applied value for δ is 0, 5; such a fractional δ improves the
probability estimates significantly. However, it is still far from optimal, espe-
cially for low-frequency counts probabilities are wrongly estimated. Nowa-
days, additive discounting methods are not applied in language modeling,
however their simplicity offers an intuitive approach to the general idea of
what smoothing tries to achieve.

3.3.2 Combining models: Backing-off and interpolation

A much more clever way to overcome the sparse data problem is to combine
the information from several models. It was already made clear that a model of
higher order gives better estimates, but at the same time the number of unseen
events raises exponentially with n. It is therefore a good idea to consult a
model of order n− 1, if the model of order n cannot help for a given sequence
(because its count is zero). This idea is usually referred to as backing off (cf.
Katz, 1987); it can be formalized as follows:

PBO(wi|wi−2wi−1) =

{
C∗(wi−2wi−1wi)
C(wi−2wi−1) if C(wi−2wi−1wi) > 0

αwi−2wi−1PBO(wi|wi−1) otherwise
(3.14)
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and for the second step of the recursion9:

PBO(wi|wi−1) =

{
C∗(wi−1wi)
C(wi−1) if C(wi−1wi) > 0

αwi−1PBO(wi) otherwise
(3.15)

As can be seen in equations 3.14 and 3.15, the algorithm recursively ap-
plies models of a shorter and shorter history until n = 1. The lower order
models are however only taken into account if the higher order model cannot
be applied. C∗ represents an already smoothed count of the n-gram under con-
sideration, because such a backoff scheme is normally applied in combination
with a standard smoothing scheme. The coefficient α is a normalizing factor
(referred to as backoff weight), which assures that the sum of all probabilities
remains unchanged.

Another way to combine information from several models is interpolation.
Whereas in a backoff scheme we rely solely on the information given by the
higher order model (if it can be applied), interpolation always mixes the esti-
mates from all the models. In (simple) linear interpolation we therefore weight
each model by a coefficient λi and then add the single estimate.

PLI(wi|wi−2wi−1) = λ1 · P ∗(wi|wi−2wi−1) + (3.16)
λ2 · P ∗(wi|wi−1) +
λ3 · P ∗(wi)

where 0 ≤ λi ≤ 1 and
∑

i λi = 1. This assures that the combined probabilities
also sum up to 1; P ∗ is meant to be any kind of estimate, it can be the MLE,
but also some smoothed form. There are also other ways to interpolate models
(e.g. geometric interpolation, cf. section 5.4.3 later on), but for the moment
linear interpolation is a sufficient means to combine information from several
models.

Note that most state-of-the-art smoothing techniques can be expressed in a
backoff and an interpolated variant. Thereby many interpolated models seem
to have slight advantages over the backoff versions (cf. Chen & Goodman,
1999). However a tricky problem in interpolation is given by the optimal es-
timation of the coefficients λi. This will be discussed in the following section
(3.4).

3.3.3 Absolute discounting

The underlying idea of absolute discounting (Ney & Essen, 1991; Ney et al., 1994)
is to subtract a small constant amount from all MLE counts, based on the in-

9This step is analogous to the first, and it is only displayed to make clear the recursive nature
of backoff algorithms. For further algorithms using backoff (e.g. 3.3.3), only the first step is
presented.
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tuition that high (and more reliable) counts are less affected than low counts,
which are not that trustworthy anyway. Absolute discounting also makes use
of lower order models, either in a backoff or in an interpolated form. The fol-
lowing equation displays the back-off variant of absolute discounting:

Pabs(wi|wi−2wi−1) =

{
C(wi−2wi−1wi)−D

C(wi−2wi−1) , if C(wi−2wi−1wi) > 0

α(wi−2wi−1)Pabs(wi|wi−1), otherwise
(3.17)

where 0 ≤ D ≤ 1. In (Ney et al., 1994) the authors also suggest an optimal
setting of D:

D =
|C1|

|C1|+ 2 · |C2|
(3.18)

where |C1|, |C2| are the numbers of n-grams with exactly one and two
counts in the given training corpus.

Despite its relative simplicity, absolute discounting has been shown to per-
form remarkably well; it could outperform other, more complex techniques.

3.3.4 (Modified) Kneser-Ney discounting

Kneser-Ney discounting (Kneser & Ney, 1995) is based on the idea of absolute
discounting, in that it also uses a constant discount. However it takes advan-
tage of another idea: Words (or lower-order n-grams) that appear in many
different contexts (i.e. higher-order n-grams) are more likely to appear in new
contexts than those appearing always in the same construction. This applies
especially for proper nouns (e.g. The Hague, Leonardo da Vinci), but also for
idiomatic expressions (e.g. ”shoot the breeze”). Hague (which is not so uncom-
mon in newspaper text) should receive a high estimate only if it follows The.
For all other contexts its probability should be estimated lower; a (similarly
frequent) noun like sparrow, occurring in many different contexts should how-
ever receive a higher estimate. This intuition can be formalized by calculating
a continuation probability, which is based on the number of distinct contexts h a
word wi appears in (|{h : C(hwi) > 0}|).

PKN (wi|wi−2wi−1) =

{
C(wi−2wi−1wi)−D

C(wi−2wi−1) , if C(wi−2wi−1) > 0

α(h)PCont(wi|h), otherwise
(3.19)

where α is again a normalizing factor to assure that the resulting estimates are
sum up to 1. The continuation probability is then calculated as follows:
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Pcont(wi|h) =
|{h : C(hwi) > 0}|∑
w |{h : C(hw) > 0}|

(3.20)

The denominator represents the total number of contexts beginning with
h; it is needed to form a probability-like estimate.

In a large-scale evaluation campaign Chen & Goodman (1999) showed
Kneser-Ney smoothing to consistently have the best performance over many
different techniques. However they also observed that this method does not
perform optimal for low frequency n-grams. For this reason they propose a
slight modification of the discounting scheme: Instead of using a single dis-
counting factor D for all counts, they apply three different parameters D1, D2

and D3+ that are applied to n-grams with one, two and three or more counts,
respectively. In (Chen & Goodman, 1999) this technique, which is referred to
as modified Kneser-Ney smoothing, has scored even better than standard Kneser-
Ney, and we are unaware of any other smoothing technique with higher per-
formance.

3.4 Parameter estimation and practical issues

3.4.1 The EM algorithm

Finding the optimal parameters for a given algorithm is a crucial (and non-
trivial) task. Often this is solved by some empirical pre-testing until the re-
sults seem somehow optimal. Empirical testing is not the worst approach, and
sometimes it is the only possible way, however it is usually tedious, and there
is no way to guarantee that the applied parameter values are (even locally)
optimal. For this reason a number of algorithms was developed that provide
automated solutions. In probabilistic frameworks the most prominent one is
the expectation maximization (EM) algorithm (cf. Dempster et al., 1977; Jelinek,
1990). It is a greedy algorithm, i.e. it takes the shortest path in the search space.
This also means that it cannot rule out the possibility of getting stuck within a
local maximum, however it can be shown that the algorithm always converges
(under certain assumptions), moreover it is fast and quite easy to apply. But
before explaining the algorithm, we have to define the goal of our optimization
task10. Our goal is to minimize the cross entropy for a probability distribution
which is combined from several singular models; our optimization parameters
are the coefficients λ1..m:

arg min
λ1..m

H = − 1
N

log(
m∑
i=1

λiPi(w1, . . . , wN )) (3.21)

10In what follows, the EM algorithm is not presented in its most general form; it is shaped
onto our task of optimizing coefficients for the interpolation of language models. For further
background information cf. (Dempster et al., 1977; Berger, 1998)
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The algorithm is then constructed as follows:

EM algorithm

Initialization: Pick some random starting values for λ1..m, e.g. λi = 1
m

(the values have to be larger than zero)

Repeat
Expectation step: Compute the expected outcome e for each λi

ek(λi) =
λki pi(wj |h)∑m
j=1 λipi(wj |h)

(3.22)

Maximization step: Compute new λi for the next iteration k + 1

λk+1
i =

ek(λki )∑m
j=1 ej(λj)

(3.23)

until λk ≈ λk+1 (exit if the changes fall below a given threshold)

The rationale of this algorithm is to measure the average success of each
of the single models with respect to the combined model and to adapt the co-
efficients at each step accordingly. In this light it becomes also clear why the
starting values have to be greater than zero, otherwise the corresponding mod-
els cannot contribute anything to the interpolation, their share of the success
remains zero as well.

3.4.2 Size reduction: Pruning

As already explained in the introduction to section 3.3, statistical language
models of higher order necessarily include a sparse data problem. This also
implies that they are the more successful, the more data they have been trained
on. This assumption is confirmed by the results of (Chen & Goodman, 1999)
and (Goodman, 2001), who tested training corpora of different sizes (up to
284 million words). Language models trained on tens or hundreds of millions
of words however attain a considerable size themselves, often making them
impractical for real applications, which normally have memory constraints.
From a practical point of view, the reduction of a model’s size is therefore an
important issue.

The most straightforward idea to reduce the size of a model is to elimi-
nate (or prune) those parts which are not reliable anyway. Reliability in turn
is obviously related to frequency: The less times we have seen the instance of
an n-gram the worse our probability estimate will be. A natural conclusion
would therefore be to exclude low frequency n-grams. Seymore & Rosenfeld
(1996) showed for example that the size a trigram model trained on 45 million
words could be reduced from 104MB to 29MB (a reduction of 72%) by simply
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eliminating all n-grams occurring one time only. But it is evident that this is
rather brute-force; Seymore & Rosenfeld (1996) therefore propose a more elab-
orate method: If in a backoff model a higher-order and a lower-order estimate
are present, and if the lower-order estimate (to which the model backs off) is
very similar to the higher-order estimate, there is no need to store the latter, it
can be pruned. This ”weighted difference” method could be shown to result in a
slightly lesser perplexity increase than plain frequency cutoff.

An even more sophisticated pruning method was developed by Stolcke
(1998) (hence known as Stolcke pruning). It is based on the relative entropy
change caused by removing an n-gram. The relative entropy (or Kullback-
Leibler distance)D between two models PA and PB can be calculated as follows:

D(PA||PB) = −
∑
wi,hj

PA(wi, hj)[logPB(wi|hj)− logPA(wi|hj)] (3.24)

where the summation is over all words wi and all contexts hj . For the task
of pruning PA represents the original model and PB the reduced one, and the
goal is to find a reduced model PB so that D(PA||PB) is minimized.

Stolcke (1998) now proposes the following pruning algorithm:

Stolcke pruning algorithm

1. Select a threshold θ (usually between 10−10 to 10−6)

2. Compute the relative perplexity increase due to pruning each n-
gram individually

3. Remove all n-grams from the model that raise the perplexity by
less than θ

4. In case of a backoff model: recompute backoff weights

This kind of pruning has shown remarkable results: Stolcke (1998) reports
of a language model whose size was reduced by 74% without any error in-
crease in a speech recognition task.

3.4.3 Data formats and toolkits

With the growing size of language models their representation and storage
format has become an important issue. A de facto standard for representing
LMs is nowadays the ARPA backoff format. It simply lists all n-grams from
the lowest to the highest order, together with their discounted (logarithmized)
probabilities and the corresponding backoff weights in a standard ASCII file
(cf. also Figure 3.3):
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ARPA backoff format: logP ∗(w|h) w h [logα(h)]

Storing log probabilities has an important advantage: As n-gram proba-
bilities tend to be multiplied in many applications, they become smaller and
smaller and can finally cause a numerical underflow. Since adding in loga-
rithmic space is equivalent to multiplying in linear space, log probabilities can
simply be added, which avoids the underflow problem.

\data
ngram 1=133530
ngram 2=1094794
ngram 3=6229280

\1-grams
-1.642683 a -1.022194
-6.866025 aardvark -0.229095
-6.610753 abacus

...
\2-grams
-6.378439 a as
-3.081988 a baby -0.060502
-4.770818 a babysitter -0.072190

...
\3-grams
-1.303144 a as in
-2.994654 a baby ant
-0.984528 about all other

...

Figure 3.3: Example of a language model in ARPA backoff format

N-gram language models stored in the ARPA format can apply any kind of
smoothing strategy; interpolated models can be expressed in terms of a backoff
format as well. In this case the probabilities of higher order n-grams simply
take into account the corresponding lower-order n-gram, there is no need to
recompute the values on the fly.

The ARPA format is also respected by the two most commonly used lan-
guage modeling toolkits: The Carnegie-Mellon (CMU) toolkit11 (Clarkson &
Rosenfeld, 1997) and the SRI toolkit12 (Stolcke, 2002). Both are publicly avail-
able for non-commercial use13, and they offer a wide range of smoothing meth-
ods and other functionality such as pruning and parameter estimation. They
also include a testing mode, in which they calculate the perplexity of a given
test corpus on a previously calculated model.

11http://www.speech.cs.cmu.edu/SLM/toolkit.html
12http://www.speech.sri.com/projects/srilm/
13For which we are very grateful to the authors!
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3.5 Linguistically motivated models

In the beginning of this chapter (3.2) it was already discussed that language
models of the n-gram family (thus representing finite-state Markov processes)
are intrinsically unable to describe the full structure of natural language. At
the same time it was made clear that the modeling techniques we have looked
at so far, do not make use of any explicit linguistic knowledge. A word is re-
garded as any symbol, its linguistic properties are neither analyzed and nor
used for the probability estimation. Moreover, due to the already described
combinatory explosion we encounter when estimating probabilities of all pos-
sible n-grams, the statistics we rely on are extremely short-sighted. Consider
the following example (from Brill et al., 1998): If we want to calculate the
probability of ’barked’ in ”The dog on the hill barked”, a 4-gram model would
consider nothing but: P (barked|on the hill). It is obvious that this results in a
wrong estimate, mainly because the subject-verb dependency (the dog-barked)
is not captured. But even if we could calculate a 6-gram-model, it would not
help us, if the dog barked on the little, grassy hill. A more adequate analysis (or
parse) of this sentence might look as displayed in Figure 3.4.

S

NP

NP

Det

The

NN

dog

PP

Prep

on

NP

Det

the

NN

hill

VP

V

barked

Figure 3.4: A possible parse of the sentence ”The dog on the hill barked”

Theoretically, a model including such an analysis could estimate the prob-
ability of ’barked’ more properly. However, parsers based on the already men-
tioned grammar formalisms could not (yet?) be successfully applied in task-
oriented NLP, mainly due to three major deficiencies:

• Algorithmic complexity: A task like speech recognition or word prediction
(as well as other AAC tasks) is particularly sensitive to time; the user
is not willing to wait even a second for the recognition or prediction to
be accomplished. Therefore a complex parsing algorithm (which does
usually not perform in linear time) cannot be applied.

• Parse ambiguity: The syntactic analysis of many phrases turns out to be
highly ambiguous, i.e. often several parses are valid for a given sentence.
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This poses a serious problem for further processing the information pro-
vided by the analysis: If all parses are considered the complexity prob-
lem aggravates and many possible but improbable structures dilute the
results; blindly discarding parses is however risky, since the most appro-
priate analysis may be among them.

• Robustness: Current parsing algorithms have severe problems with the
treatment of partial structures (sentence beginnings), unknown words
or simply ill-formed sentences that occur quite often in normal conver-
sation (possibly including postponed corrections); if an unknown (or
wrong) construction is encountered, most algorithms do not return any-
thing, not even a partial parse of the already recognized structures. This
is usually fatal in a real-world application, especially in an AAC context,
where the user’s possibilities to deal with such a ”blank screen”-situation
are highly reduced.

For these reasons, since the early 1990s many research efforts have focused
on the development of shallow parsing algorithms that offer an uncomplete
but (rather) quick and more robust analysis (cf. for example Abney, 1991; Aı̈t-
Mokhtar et al., 2002; Basili & Zanzotto, 2002). Conversely one attempted to
enrich statistical language models with linguistic information. One of the first
attempts in this perspective was to rely on Part-of-Speech information (n-PoS).
A more advanced model is Abney’s (1991) chunk parsing strategy and Chelba
and Jelinek’s Structured Language Model (1997; 1998; 2000), relying on a partial
analysis of the constituent structure. Finally, probabilistic context-free grammar
formalisms (PCFGs) are able to determine the recursive structure of a sentence,
while they are more robust than non-probabilistic parsing algorithms. In the
following these models are shortly presented.

3.5.1 Part-Of-Speech and class-based models

A straightforward way to introduce linguistic knowledge is to build a lan-
guage model on n-grams of parts-of-speech rather than on the words them-
selves. This reduces the parameter space tremendously, since tens of thou-
sands of singular words are mapped to a rather small number (app. 30-100) of
equivalence classes. The same can be achieved by automated clustering tech-
niques, such as IBM clustering (cf. Brown et al., 1992), where each word is as-
signed to a cluster or class, based on its distributional properties. Approaches
based on clustering instead of manually coded parts-of-speech are usually re-
ferred to as class-based models, the formalization however is the same. The
probability of a word wi, given a context hi is calculated from the probability
of wi belonging to a class ci and the probability of ci after having seen the n−1
previous classes:

P (wi|hi) =
∑

ci∈B(wi)

P (wi|ci)× P (ci|ci−n−1, . . . , ci−1) (3.25)
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The probability of a wordwi belonging to a class ci can be determined from
the maximum likelihood estimate of wi given ci; likewise we can use the MLE
to calculate the conditional probability of ci given ci−n, . . . , ci−1:

P (wi|ci) =
C(wi, ci)
C(ci)

(3.26)

P (ci|ci−n, . . . , ci−1) =
C(ci−n−1, . . . , ci−1, ci)
C(ci−n−1, . . . , ci−1)

(3.27)

Note that the formula in 3.25 applies to the general case, where a word
can belong to several classes (B(wi) being the bin of all classes that wi belongs
to). This is obviously true for parts-of-speech; many words can be assigned
to more than one linguistic category; for example a word like ’blind’ can be an
adjective, a noun and a verb. In such cases we have to calculate the estimates
separately for each possible category. The situation becomes easier when a
word is allowed to belong to one class only (so-called hard clustering). The
already mentioned technique of Brown et al. (1992) follows such a hard clus-
tering approach; their clustering algorithms allow for a syntactic as well as a
semantic regrouping of words.

The intention of using classes instead of words lies foremost in the reduc-
tion of the parameters to be estimated. It is obvious that with a smaller pa-
rameter space the length of the history can again be extended; 7-grams or even
higher order n-grams over parts-of-speech then become imaginable. An inter-
esting approach in this direction has been presented by Niesler & Woodland
(1996) who developed a variable-length n-gram model over parts-of-speech
(with n up to 10). The size of the history is increased until the estimates of the
models at order n and n+ 1 converge.

While the length of the history can be extended, a class-based model is
surely not a linguistically adequate model in that it still does not explicitly rep-
resent constituent structure; moreover such models lose quite some of the se-
mantic information which is inherent to word-based models. Typical colloca-
tions or selectional preferences of verbs for example are not modeled anymore:
P (barked|the dog) will certainly give a more accurate estimate than P (barked|V)
× P (V|Det NN).

For this reason, most approaches make use of a combination of word- and
class-based models. Fazly & Hirst (2003) for example interpolate a tag trigram
model with a word bigram model for the task of word prediction. The gains
of the combined model were however not very large with respect to the word-
based bigram model alone(+0,9% in ksr).

3.5.2 Chunk-based and partial-parse language models

The idea of chunking is related to the works of George A. Miller (1956), who
discovered that the short-term memory of people does not depend on the
number of raw symbols (e.g. numbers or characters), but on the number of
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perceptual units. Once such a unit is memorized, it can comprise a (nearly)
arbitrary number of symbols, and it can as easily be recalled as a singular
symbol. Miller concluded that human perception is largely making use of
chunking, i.e. people perceive chunks of features rather than the features
themselves. With regard to language perception (and production) this means
that not single words are processed but phrasal constituents. A number of
psycho-linguistic experiments support this idea, for example it can be shown
that people, who mispronounced a word, tend to repeat the whole constituent
(e.g. ”I swear to swell, uhm, to tell the truth.”).

Whereas the idea of chunking cannot yet account for the full structure of
natural language, it is still much more plausible than that of a simple word-
based Markov process. Furthermore, chunks are normally far easier to de-
termine than the full parse of a phrase. In (Abney, 1991) a chunk (or partial)
parsing strategy was proposed, and many other chunk parsers have been de-
veloped since.

Schadle et al. (2004) have presented a word prediction model based on the
idea of chunk parsing. Instead of considering the last words for prediction
they propose a model based on the last chunk heads (i.e. the grammatically
dominating items), derived from a partial parse of the previous constituents.
Returning to our example from above a chunk parse of ”The dog on the hill
barked” would look as follows (the heads are printed in bold face):

[the dog]NP [on the hill]PP [barked]V P

It is obvious that such a structure helps to better predict ’barked’, since ’dog’
(being the best predictor for ’barked’) is the head of the first chunk. Their model
comprises three major components: a tagger assigning parts-of-speech to the
previous words, a chunker providing a chunk segmentation of the previous
constituents (including the chunk heads), and a predictor, which uses the cate-
gories of the previous n−1 chunks as well as their heads to predict the follow-
ing chunk.

The Structured Language Model by Chelba & Jelinek (1998, 2000); Xu et al.
(2002) goes a step further in that it joins the chunks to larger constituents, i.e.
its prediction is based on a (binary) partial parse of the sentence beginning
(Charniak’s 2001 immediate head strategy is very similar). For our example such
a partial parse tree before the prediction of ’barked’ would look as depicted in
Figure 3.5 (the respective heads are given as indices to the constituent labels).

Just as the model of Schadle et al. (2004), the SLM consists of three mod-
ules:

• a predictor that predicts the following wordwi, given the word-parse pre-
fix.

• a tagger that predicts the PoS-tag of the following word, given the current
word-parse prefix.
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NPdog

NPdog

The dog

PPon

Prep

on

NPhill

the hill

Figure 3.5: A partial parse tree for ”The dog on the hill ”

• a parser that continues the parsing process at each step by either generat-
ing a unary non-terminal label or performing a binary (left or right) join
operation to connect two constituents.

So, at every step the algorithm performs three actions: Estimating the prob-
ability of the following word wi and its tag ti, and the next parsing operation
ki.

The chunk-based model as well as the SLM showed a slight but significant
performance improvement (with respect to a trigram baseline), however some
difficulties could not yet be addressed in a satisfying way. Since these models
estimate probabilities on complex entities which are harder to observe than
plain words, optimal parameter estimation and smoothing strategies for these
models have not yet been developed. Further research would be necessary in
order to exploit the full potential of these approaches.

3.5.3 Probabilistic context-free grammars

Context-free grammar (CFG) formalisms are a common way to describe lin-
guistic structures. Whereas their expressive power is still not sufficient to de-
scribe all linguistic phenomena (this is only achieved by mildly context-sensitive
formalisms), they cover at least a large part of them. For example the tree
structure over our example sentence given above can be described in terms
of a context-free grammar. CFGs consist of a (finite) set of terminal symbols
T , normally representing the words of a given vocabulary, a set of (again fi-
nite) nonterminal symbols N , corresponding to the higher-order linguistic cat-
egories and a set of transformation (or rewrite) rules of the form ”A → γ,
where A ∈ N and γ ∈ (N ∪ T )∗, i.e. whereas the left-hand side of the rule
has to be a single non-terminal symbol, the right-hand side can consist of any
sequence of terminals and non-terminals.

The probabilistic counterpart of CFGs includes additionally a probability
estimate for every rule. These estimates have to sum to 1 at each choice point
(the left-hand side of a rule; i.e. ∀i

∑
j P (Ni → Tj) = 1). The overall probability

of a parse is the product of all applied rule probabilities. A small probabilistic
context-free grammar being able to generate our example sentence The dog on
the hill barked could look as displayed in Table 3.5, the tree in Figure 3.6 shows
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a parse of the example, based on this grammar.

S→ NP VP 1,0 Det→ the 0,5
NP→ Det NN 0,8 Det→ a 0,5
NP→ NP PP 0,2 NN→ dog 0,7
PP→ Prep NP 1,0 NN→ hill 0,3
VP→ V NP 0,5 Prep→ on 0,6
VP→ V PP 0,2 Prep→ under 0,4
VP→ V 0,3 V→ barked 1,0

Table 3.5: An example for PCFG transformation rules

S1,0

NP0,2

NP0,8

Det0,5

the

NN0,7

dog

PP1,0

Prep0,5

on

NP0,8

Det0,5

the

NN0,3

hill

VP0,3

V1,0

barked

Figure 3.6: A possible PCFG parse of the sentence ”The dog on the hill barked”

As opposed to CFG parsing formalisms, which also suffer from the al-
ready described problem of robustness, a PCFG has an important advantage:
A structure which could not be parsed is not simply ruled out or leads to a
parse error, it is only assigned a low probability (in practice PCFG probabili-
ties are also smoothed). Another advantage is that such a framework can deal
with the already mentioned syntactic ambiguity (e.g. ”She saw the rabbit with
the binoculars”), in that all possible parses can be ranked according to their
probability.

An important problem however remains in the complexity of parsing:
Such grammars have the same complexity as normal CFGs, so the parsing
process is still rather slow. Another difficult issue is the estimation of the rule
probabilities, which is not as straightforward as for n-grams. This is normally
done by applying the Inside-Outside algorithm, an EM-style algorithm (3.4.1)
that iteratively adapts the rule probabilities according to the number of times
they are applied during training. But, as already mentioned, EM algorithms
can get stuck within local maxima, and the probability surface of such models
is prone to contain many of them, so in many cases a suboptimal estimate is
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calculated.

PCFGs could not be shown to provide a useful language model alone, but
some works have reported interesting gains when a PCFG is interpolated with
a word-based n-gram model (cf. Moore et al., 1995; Roark, 2001).

3.5.4 A special problem: Treatment of compounds

After a short overview on general linguistic formalisms we now focus on a
particular problem concerning the word level. All models we have consid-
ered so far assume (at least implicitly) that a word consists of a sequence of
characters between two empty spaces or punctuation signs. At the same time
they assume that the amount of different words, i.e. the size of the vocabulary,
is more or less finite. Unfortunately this does not hold for some languages
(such as Dutch, Swedish, Greek and German): They allow words to aggluti-
nate so that compound words of sometimes impressive length can be formed.
While this formation process respects certain rules, it is productive, i.e. valid
compounds can be formed instantaneously, and the number of possible com-
pounds is (theoretically) infinite. Table 3.6 shows a few examples from German
(since German is one of the languages treated in this work):

German word/compound Translation Frequency
Wort ’word’ 39.241
Wortvorhersage ’word prediction’ 0
Wortvorhersagemodul ’word prediction component’ 0
Wortvorhersagemodulentwicklung ’development of a

word prediction component’ 0

Table 3.6: German compounds and their frequencies in a 120 million word
newspaper corpus (from: Die Tageszeitung 1989-1998)

When we look at the frequencies of the compound words in Table 3.6, the
challenge that these words mean for an NLP application becomes apparent
immediately. Since many compounds are created on the fly, they never appear
in even large corpora. And this phenomenon is not marginal: Baroni et al.
(2002) report from an analysis of a large German newswire corpus (APA) in
which nearly half (47%) of all the word types were compounds; most of them
(83%) had a very low frequency (≤ 5). The analysis of unknown words (out-of-
vocabulary words) in the following chapter confirms this observation: More
than half of the unknown words (51%) of a German newspaper test corpus
were compounds (cf. chapter 4, Table 4.6). So, when we deal with a language
that allows compounding, this phenomenon has to be addressed in some way,
since a word not occurring in any vocabulary, cannot be translated, recognized
or predicted by an NLP application.

There have been a number of works studying the linguistic properties of
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compounds (cf. Goldsmith & Reutter, 1998; Langer, 1998), and some methods
were proposed to treat compounds in NLP applications. However, unlike lan-
guage modeling in general, compound treatment turned out to be very task-
dependent, so that a proposed method cannot easily be transferred to another
NLP domain. A number of approaches has been proposed for machine trans-
lation (cf. Koehn & Knight, 2003; Popović et al., 2006), for speech recognition
(cf. Larson et al., 2000; Ordelman et al., 2003), and for word prediction (cf. Ba-
roni et al., 2002; Trost et al., 2005). Since the latter is the main concern of this
work, in the following the focus is placed on compounding in word prediction:

Baroni et al. (2002) and Trost et al. (2005) propose a compound prediction
model, which is based on the morphological structure of many nominal com-
pounds: They consist of a head (i.e. grammatically dominating) and a modi-
fier part, and are normally right-headed, i.e. the head follows the modifier. In
between so-called compounding suffixes14 (CS) can occur, which are only func-
tional. To give an example: As Figure 3.7 shows, ’Hundenase’ (”dog’s nose”) is
analyzed into a modifier ’Hund’ (’dog’), ’e’ (compounding suffix) and a head
’Nase’ (’nose’).

NN

Mod

N

Hund

CS

e

Head

N

Nase

Figure 3.7: Head-modifier analysis of a German compound (’Hundenase’)

The model of Baroni et al. (2002) is based on automatically derived semantic
classes, from which the modifier-head pairs can be selected. In addition prob-
abilities for words being either a head or a modifier (Pishead(wi), Pismod(wi))
have been calculated on previously parsed training corpora. When in use the
compound predictor is started as soon as a word which is likely to be a modi-
fier has been entered. The probability of the following word (which has to be a
head to the modifier) is then calculated by interpolation of its raw probability
P (wi), the probability of its PoS-tag P (wi|c) (only nouns can serve as heads),
the probability for being a compound head Pishead(wi) and the probability of
being a head to this modifier Pclass(wi|m), as derived from the previously de-
termined semantic classes. In addition a set of rules deals with the assignment
of the correct suffix.

Unfortunately, even though it is rather elaborate, and even though it offers
to create a large range of compound words, which are not part of the vocabu-
lary, this model shows only marginal improvements in ksr for German as for
other Germanic languages (app. +0,3%). This is probably due to the presuppo-

14Sometimes these elements are also referred to joint morphemes, this is however not the ap-
propriate term, since they morphologically belong to the first element.(cf. Langer, 1998).



62 3.6. Maximum Entropy models

sitions that are made on the type of compound to be treated (N+N). Whereas
this type represents certainly the most frequent one, the nature of compound-
ing seems to be more creative than that. In chapter 6 we will reconsider this
problem and propose our method to deal with compounds.

3.6 Maximum Entropy models

After having considered Markovian models as well as approaches making use
of linguistic insight we now present a model which is – in principle – able to
integrate both perspectives. As we have seen especially in the past section,
there are many more information sources that can be exploited to estimate
the probability of a word than simple n-grams: We could use partial part-of-
speech information, chunks or partial parse trees, and we could also imagine
to exploit semantic information (which has not been an issue so far), all de-
rived from the already entered context h. However, the combination methods
we have discussed up to now, can join these estimates only in a suboptimal
way. Whereas a backoff strategy would always choose either one of the given
models (which is certainly not a useful solution), interpolation constructs the
linear average over all models. This means that for every model a part of the
probability mass is reserved, no matter if a model can be applied for a given
history or not. The influence of each model is optimized globally, it does not
take into account the local constraints given by the current history. Thus, an in-
terpolation makes rather rigid assumptions about the influence of each model
given any possible context, which finally leads to wrong estimates.

Maximum Entropy (ME) models resolve this problem by not combining
model estimates but by combining the information sources directly into one
model. The Maximum Entropy principle can be attributed to the works of
Jaynes (1957), and it can be stated as follows (from: Rosenfeld, 1996):

1. Reformulate the different information sources as constraint functions
that are to be satisfied by the combined estimate.

2. Among all possible probability distributions that satisfy these con-
straints, choose the one with the highest entropy.

The rationale behind this principle is to make the fewest assumptions on
events for which we have no further evidence; as long as the constraints – im-
posed by our training data – are satisfied, no further assumptions are made.15

To build an ME model from our previous models, we first have to reformulate
all our single models as constraint functions. For a bigram model, this might
look as follows:

15Some authors (e.g. Berger et al., 1996) attribute this idea to William of Occam’s principle to
make the least assumptions possible in order to explain a phenomenon (Occam’s razor).
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f(wi−1, wi) =

{
1 if (wi−2wi−1) ∈ S
0 otherwise

(3.28)

where S is the observed subset of our possible event space S, i.e.
f(wi−1, wi) is 1 if we have seen wi−1, wi and 0 if not. It is clear that this leads to
a very large number of constraint functions, one for every possible sequence
wi−1, wi. To form a model out of these constraints, the following formula is
applied:

P (wi|h) =
1

Z(h)
· exp

(∑
k

λk · fk(h,wi)

)
(3.29)

where λk are the parameters and Z(h) is a normalizing term, so that the
sum of all estimates is 1 for every possible context h. To maximize entropy,
we have to set the parameters λk so that the resulting distribution is the flat-
test possible. This can be achieved by a Generalized Iterative Scaling (GIS) al-
gorithm (cf. Darroch & Ratcliff, 1972), which operates very similar to the al-
ready described EM algorithm (cf. 3.4.1), but is guaranteed to find the global
maximum. Unlike the EM algorithm it is however computationally very de-
manding, which makes training an ME model a problematic procedure. The
application of such a model is CPU-intensive as well, because the normaliza-
tion has to be performed at every update of the context, taking into account
every parameter λk.

To conclude: ME modeling offers an elegant and general way to combine
information from various sources. There is also a growing number of works
reporting significant performance gains for ME models with respect to stan-
dard approaches (cf. Rosenfeld, 1996; Khudanpur & Wu, 2000). However, up
to now its computational complexity has prevented this technique from being
widely used. This could change with Moore’s law and with the development
of more efficient algorithms, in any case ME modeling will remain subject to
intensive research.

3.7 Conclusion

We started this chapter by an abstract consideration on communication. We
then gave a short introduction to the basics of information theory in order to
characterize the notion of redundancy and to show how future symbols can
be predicted from the context, and how all this is related to AAC. Afterwards
we presented the theory and practice of Markovian (n-gram) language models
and explained their intrinsic problems: data sparsity, limited context and in-
ability to incorporate non-linear dependencies. We introduced and discussed
a number of smoothing methods, making the estimation of unseen events pos-
sible, and we depicted some algorithms which are needed for parameter esti-
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mation (EM) or model reduction (Stolcke pruning). In the end we presented
possible alternatives to n-gram approaches: linguistically motivated models
such as PCFG’s, and maximum entropy models, which enable to integrate any
kind of information within one model.



Chapter 4

User adaptation

An army without flexibility never wins.
An unbending tree is easily
brought down by the wind.

The hard and stiff fall.
The soft and flexible rise.

LAOZI
(Tao Te King1, 76, 6th c. BC)

The prediction models presented in the last chapter have one property in com-
mon: they are all static in the sense that their predictive capacities do not
evolve over time. While the methods presented in the following still rely on
such static models, they do however include a dynamic aspect in that they
adapt the underlying model to the current input. Such an adaptation can hap-
pen temporarily or permanently, and it can focus on different linguistic prop-
erties of the input.

In this and the following chapter an introduction to a number of adaptation
techniques is given, and results from our work on the application of these tech-
niques are presented and discussed. Whereas the subsequent chapter focuses
on semantic adaptation, in the following a range of methods are presented
that allow adapting a word predictor to the user’s style of communication: re-
cency promotion (or cache) models, a user lexicon and a dynamically adapted
language model, learning on the user input (Dynamic User Model, DUM).

The chapter is structured as follows: While in the first section (4.1) the need
for adaptation is motivated, the second section (4.2) approaches the adaptation
problem from a theoretic point of view and introduces three frameworks to
achieve a dynamic integration of new information. Section 4.3 then presents
in detail the above mentioned adaptation techniques. In section 4.4 the evalua-
tion methodology as well as the characteristics of the training and the test data

1Transl. by George Cronk, 1999.
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are explained. The last section (4.5) then presents and discusses the evaluation
results for all three adaptation methods.

4.1 The necessity of adaptation

As argued in the last chapter, statistical language models have become very in-
fluential in many NLP techniques and applications. A difficult issue for these
models however – as for all data-driven approaches – is their sensitivity to
the training material. Such models necessarily adapt to the prevalent syntactic
and semantic characteristics of these resources, which means that their perfor-
mance will always be best on text from the same domain, and it will be the
worse the more the statistical properties of the training and the usage (or test)
data differ. To give an example for the strength of this dependency: Rosen-
feld (1996) has shown that a language model which was trained on Dow-Jones
newswire corpora has a perplexity twice as high when tested on a (quite simi-
lar) Associated Press corpus rather than on some other Dow-Jones text.

One first trivial conclusion from this observation would be to use training
corpora which are as close as possible to the task at hand, e.g. for building
a machine translation system for parliament speeches, one should use parlia-
ment speeches as training material.

However, when we try to transfer this idea to the construction of an AAC
system, we run into two problems: Firstly, for the time being there are no large
corpora from AAC users available for training (cf. Trnka & McCoy, 2007). Sec-
ondly, most of the time an AAC device is to be considered a general purpose
tool, i.e. it can neither be shaped to fit a standard user nor on a particular
communicative context. From our own experiences with AAC users at the re-
habilitation center of Kerpape (cf. also section 6.4) we have found the following
typical purposes for which an AAC system can be used:

• Colloquial conversation (as usual speech)

• Writing personal letters and e-mails

• School-related dialog (student’s replies)

• Specific language training with speech therapists

• Medical dialog with physicians and practitioners

It is already clear that these usage contexts differ quite strongly from one
another, and one can imagine many more (for example writing a book or a
scientific work). In addition, as discussed in chapter 2, AAC users usually
differ quite strongly from one another, depending not only on their personality
and specific way of communicating but also on their clinical pattern. A child
suffering from cerebral palsy and a 50-year old Locked-In patient will probably
communicate in a very different manner.
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So, if the prospective user of an AAC system and the purpose(s) for which
she or he will use it are not known, how can we reduce the deteriorating train-
ing effects as much as possible? There are three remedies: The first is to di-
versify the training corpus, i.e. to include resources from various domains
(referred to as register-diversified corpora; cf. Biber, 1993). Such corpora are not
only valuable training resources, they are also an indispensable means for the
study of linguistic phenomena. Whereas they do exist now for the English lan-
guage (cf. the British National Corpus, comprising more than 100 million words
from various domains; Burnard & Aston, 1998), it is still rather difficult to find
diversified corpora for other languages. Especially obtaining large corpora of
transcribed speech, which would be most helpful in the context of AAC, is
very difficult for languages such as German or French.

The second remedy is size: it can be assumed that larger corpora provide
more solid statistical estimates, therefore it is better to use large amounts train-
ing data. In some works it could be shown that training on very large corpora,
even from other styles and domains, results in more reliable and robust models
than training on small but adapted corpora (cf. Trnka & McCoy, 2007).

Obtaining large corpora is not very difficult anymore. Many important
newspapers and press agencies now offer their archives in electronic format,
and one single year of a newspaper edition already comprises tens of millions
of words. Moreover, newspaper text is a valuable resource for training a lan-
guage model, since the text is usually rather new, it is written by many authors,
and it covers various topics and text styles, such as press statements, essays,
interviews and travel reports. But it goes without saying that the main focus
of newspaper text is on politics and that most articles are written in an objec-
tive and factual ”news”-style, so we can certainly not speak of a well-balanced
corpus. Whereas it is not unimaginable that AAC users do write newspaper
articles, most of the time they will not communicate in the way newspaper
editors write.

Another source for obtaining large corpora is the world-wide-web, offering
textual documents to an almost inexhaustible extent. The already mentioned
Web 1T 5-Gram data set, offered by Google Inc. for example offers n-gram fre-
quencies that have been estimated on 2 trillion word token from publicly ac-
cessible web pages. Data acquired in this way however include a number of
problems: They are uncontrolled, i.e. their origin can hardly be verified, they
can comprise duplicates, and the number of spelling and grammatical errors
is rather high.

The third remedy to reduce the effects of the training data is model adap-
tation. Rudimentary strategies to adapt to the user’s way of communicating
have already been applied by the first electronic AAC devices (cf. Hunnicutt,
1986; Swiffin et al., 1987a), and in many other NLP areas such strategies are ap-
plied as well (cf. De Mori & Federico, 1999; Rosenfeld, 2000; Bellegarda, 2004).
Adaptation strategies can be characterized with respect to their latency: While
short-term methods have an immediate (and usually ephemeral) effect on the
underlying model, long-term methods adapt slowly but permanently to the



68 4.2. Combination schemes

user’s input.

Furthermore, we can distinguish adaptation methods with regard to the
information sources they exploit: Whereas user adaptation methods make use
of the available input from the user to adapt to her or his lexical and syntactic
preferences (the user’s language style), topical or semantic adaptation refers to
methods that try to discover the current semantic context of a document to be
written in order to adapt to the given semantic constraints. This concerns in
particular the content vocabulary, which can be assumed to be more depen-
dent on the current topic of discourse. Such methods will be the subject of the
next chapter.

4.2 Combination schemes

From an abstract perspective the problem of adaptation can be described as
follows: We face two information sources, a large text corpus of general lan-
guage B, which can be used to derive base estimates, and a (usually) small
adaptation corpus A, stemming from user input. Two tasks have to be per-
formed in order to obtain an adapted model: (i) we have to extract the rele-
vant information from the adaptation corpus, and (ii) we have to combine this
information with the base model. The information to be extracted can concern
various aspects of linguistic description, and a large range of methods can be
applied here. Such approaches will be described and investigated in the re-
mainder of this and the following chapter. Let us first however look at some
fundamental paradigms how the incoming information can be integrated.

Information integration can be performed on several processing levels:
One can combine the (real or estimated) frequency counts of the base and the
adaptation data and then continue to build an integrated model, one can sup-
plement a base model with additional constraints, derived from the adaptation
data, or one can operate on the model level (model merging). In the following
a short introduction to the main paradigms in this field is given.

4.2.1 MAP adaptation

The Maximum a Posteriori (MAP) criterion is closely related to the Maximum
Likelihood Estimate (MLE). Given two distributions (based on two data sets A
and B) it maximizes the combined probability for the observed data (cf. Fed-
erico, 1996; De Mori & Federico, 1999; Bacchiani & Roark, 2003).2 A MAP-
based adaptation scheme therefore operates on the count level: To maximize
the posterior probability estimate (based on the observations from A and B),
the frequency counts of the single models are simply added; this leads to the
following posterior estimate PMAP (wi|h):

2In fact, when one of the two data sets gets larger and larger, the MAP estimate approximates
the MLE.
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PMAP (wi|h) =
α · CB(hwi) + CA(hwi)
α · CB(h) + CA(h)

(4.1)

In its general form, the weighting factor α ought to be 1. In this case how-
ever the combined model is strongly biased towards the base data, since adap-
tation corpora are usually much smaller. To reduce the influence of the base
model, an α smaller than 1 is normally applied. It can remain constant over all
histories h, or it can be calculated separately for each h. The difficulty is then to
find the optimal value (or values) for α. It is usually determined empirically on
held out data, but kept constant over the whole integration process. Another
difficulty using MAP is that the raw frequency counts of both data sets A and
B have to be carried along; the probability calculation (including smoothing
and truncation) then has to be performed on-line during prediction, which,
depending on the schemes applied, implies more computational effort.

4.2.2 MDI adaptation

In section 3.6 the Maximum Entropy model was presented. Adaptation by
minimum discrimination information (MDI) is strongly related to this model (cf.
Della Pietra et al., 1992; Chen et al., 2003). It integrates an a priori distribution
PB(M), estimated on a large, general corpus B with a set of constraints, de-
rived from the adaptation corpus A so that the resulting distribution is closest
to PB(M). Closeness is here established by measuring the Kullback-Leibler dis-
tance (cf. equation 3.24) of the prior distribution and the resulting model. MDI
adaptation has the following parametric form:

PMDI(wi|h) =
PB(wi|hi)
Z(h)

· exp

(∑
k

λk · fk(h,wi)

)
(4.2)

where fk(h,wi) is a constraint function derived from the adaptation cor-
pus A and λk is an associated MDI coefficient. The similarity of this definition
with the equation in section 3.6 is obvious. And as for Maximum Entropy
the constraint parameters λ are estimated by Generalized Iterative Scaling (cf.
Darroch & Ratcliff, 1972), which is guaranteed to provide a globally optimal
solution. However it was already mentioned that this algorithm is computa-
tionally rather demanding. This is especially hindering in the context of dy-
namic adaptation, since in this case new information continuously arrives and
parameter estimations have to be updated on-line.

4.2.3 Model merging

Another way to integrate new information is to operate on the model level,
i. e. to estimate two separate models on the data of A and B, respectively,
and to combine them afterwards. The most straightforward way of combin-
ing models probably is linear interpolation of the two estimates PB(wi|h) and



70 4.3. User adaptation techniques

PA(wi|h):

PMM (wi|h) = λB · PB(wi|h) + λA · PA(wi|h) (4.3)

The coefficient λ can then again be estimated by an expectation maximization
algorithm (cf. section 3.4.1). In an adaptation setting this algorithm enables
to dynamically modify the coefficients, according to the performance of each
model (cf. also Choi & Oh, 2006). As the EM algorithm constantly observes
the current performance of the participating models, the overall model thus
becomes sensitive to dynamic performance changes over time.

However, depending on the model under consideration (e.g. if the two
models are very complementary), it might be more sensible to apply a backoff
technique:

PMM (wi|h) =

{
PA(wi|h) if C(hwi) > 0
α · PB(wi|h) otherwise

(4.4)

Here the base model estimate is only applied if the adaptation model can-
not provide any estimate. As before, the constant backoff weight α serves here
as a normalizing factor. Depending on the reliability of the adaptation data
this scheme can also be applied vice versa, so that we back off to the adapta-
tion model only if the base model does not return an estimate.

4.3 User adaptation techniques

In the following three user-adaptive strategies will be presented: Whereas the
cache model represents a short-term method, the adaptive user lexicon as well
as the dynamic user model are techniques acting in the long term. Introductory
overviews on adaptation methods for language models are given by De Mori
& Federico (1999) and Bellegarda (2004).

4.3.1 Recency promotion (cache) model

Cache models take advantage of the phenomenon that people like to repeat
themselves. And even if we do not want to accept this (slightly disrespectful)
allegation, it is a matter of fact that words are not evenly distributed over a
corpus but rather occur in bursts3; once they are uttered, they have a higher
probability of recurrence in the given context. This has been known for a long
time, but the importance of this influence was only recognized in the 1980s,
when Shannon game experiments (cf. also section 3.1.2) were performed at IBM
(cf. Rosenfeld, 1994). The results of humans were compared to a trigram lan-
guage model, and it was discovered that in 40% of the cases, where the humans

3This only applies for content words. Function words have a much more even distribution.
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outperformed the LM, the word to predict had already occurred in the context.
It therefore seems worthwhile to keep track of the recently entered words and
promote their probability estimates.

Cache models were first presented by Kuhn (1988) and Kupiec (1989);
Kuhn & De Mori (1990) report significant perplexity reductions with respect to
a trigram baseline. In general such models work by interpolating a standard
model (e.g. a trigram) with a cache function:

P (wi|h) = λBPB(wi|h) + λcache · Pcache(wi|wi−1−L, ..., wi−1) (4.5)

where L represents the maximum length of the cache, and λB and λcache
have to sum up to 1 (dynamically determined by EM). Obviously, L is reduced
to min(i− 1, L) if the current history is shorter than L. In its simplest form the
cache-based probability is calculated as follows:

Pcache(wi|wi−l−1, ..., wi−1) =
1
L

i−1∑
k=i−L

I(wk = wi) (4.6)

where I(wk = wi) represents an indicator function returning 1 if the given
word wi occurs among the L most recent words (i.e. is in the cache), and 0
otherwise. In this way every word wi in the cache receives a constant amount
of size λcache

L (according to the number of times wi occurs). Normal sizes for L
are 100 to 1000; function words are normally not added to the cache because
their occurrence probability depends much less on previous occurrences.

The elements to be cached need not be words only. There have been
promising approaches caching the most recent bi- and trigrams (cf. Jelinek
et al., 1991). Smaı̈li et al. (2006) have presented a feature cache model that per-
forms a shallow analysis of the context and keeps the last morpho-syntactic
features (such as number and gender) in order to better model agreement of
future words.

Moreover, different cache functions can be applied. In the above function
the cache factor is constant, i.e. every element of the cache receives the same
amount of additional probability. This however probably is not the optimal
solution: While a word is unlikely to re-occur immediately after its first occur-
rence, it can be expected that there is a recurrence peak and that the influence
of recurrence diminishes with growing distance; the probability of a word to
re-occur will therefore not be constant.

To get a clearer picture of this dependency between distance and recur-
rence, we determined distance frequencies on large newspaper corpora for
French (LeMonde; 100 million words), German (Die Tageszeitung; 121 million
words) and English (The Guardian; 118 million words). Function words were
excluded from the distance frequencies but not from the distance calculation
itself. Figure 4.1 displays the average probabilities of recurrence from 0 to 1000
words for the three languages.
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Figure 4.1: Recurrence probability for distances from 0 to 1000 words; mea-
sured on large newspaper corpora for French, German and English

The curves in Figure 4.1 suggest a clear and stable dependency between
the distance and the probability of recurrence. The probability rises quickly
from a distance of 0 to approximatively 20 words and falls exponentially after
this peak.

Since the curves in Figure 4.1 show such a characteristic and smooth pat-
tern, it seems worthwhile to adapt the cache function accordingly. This has
been done by Clarkson & Robinson (1997) who present a cache model with an
exponentially decaying probability function. They calculate the cache proba-
bility as follows:

Pcache(wi|wi−1−l, ..., wi−1) = ν ·
i−1∑

k=i−L
I(wk = wi) · eγ(i−k) (4.7)

where I is again the indicator function, α is the decay rate and ν a normal-
izing constant (=

∑i−1
k Pcache(wk)). The inclusion of the decay factor eγ(i−k)

assures that the recurrence probability declines exponentially with a growing
distance. However, this function cannot model the low probability for short
distances (0-20 words, cf. Figure 4.1), it therefore overestimates recurrence for
short distances.

To approximate the probability function even better, we propose a two-fold
cache function that distinguishes the rising and the falling part of the proba-
bility curve. This is achieved by the following function (distance d = i− k):

Cf(d) =

{
ν · dαµα if d ≤ µ
ν · eγ·d + δ if d > µ

(4.8)
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where µ is the distance of the highest recurrence probability (peak), α is the
growth rate, δ is an adjustment factor, γ is the decay rate and ν a normalizing
constant. This two-fold cache function Cf(d) then replaces the previous decay
function:

Pcache(wi|wi−1−l, ..., wi−1) = ν ·
i−1∑

k=i−L
I(wk = wi) · Cf(i− k) (4.9)

Figure 4.2 shows the probability curves for distances from 0 to 1000 words
for the average of the three curves in Figure 4.1, the twofold function as dis-
played in 4.8, the exponential function used by Clarkson & Robinson (1997)
and the constant function as introduced in the beginning of this section (cf.
4.3.1).
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Figure 4.2: Average recurrence probability and probability estimates of the
constant, the exponential and the two-fold cache function (with α = 0, 3, β =
1, 1, γ = −0, 009, δ = 0, 04)

It can clearly be seen in Figure 4.2 that the constant cache function largely
underestimates the recurrence probability for words of a distance of up to 250
words, and it overestimates afterwards. The plain exponential function es-
timates the recurrence probability much better, however it strongly overesti-
mates on short distances (from 0 to 20 words), and it disregards the influence
of long-distance words (after 500-600 words). The two-fold exponential cache
function, as given in equation 4.8, best approximates the average recurrence
probability. It is therefore reasonable to apply this one in our cache model.

4.3.2 User lexicon

Updating the lexicon according to the user’s input has been one of the earli-
est adaptation techniques, it can be found already in the first AAC systems
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(cf. Hunnicutt, 1986; Swiffin et al., 1987a) and in many succeeding systems as
well (cf. Le Pévédic, 1997; Carlberger et al., 1997; Trost et al., 2005; Blache &
Rauzy, 2007b). The ability to predict previously unknown words significantly
increases the user’s personal satisfaction with the system. Especially personal
names and other proper nouns have a strong emotional impact; if the system
is able to integrate them, it shares an important part of the user’s knowledge,
and in turn it is appreciated much more.

But also from the modeling perspective, vocabulary adaptation is of help.
It is a trivial observation that the percentage of out-of-vocabulary words (OOV
henceforth) grows with the difference between the training data and the con-
text of use, and the percentage of unknown words has a direct deteriorating
effect on prediction capacity.

Two aspects have to be distinguished with respect to the adaptation of the
vocabulary: The first one is the ability extend the vocabulary by previously un-
known words, the second is the way to provide statistical information for these
words. Many models simply integrate new words by assigning a static (usu-
ally very low) probability, other approaches dynamically update the probabil-
ity estimates for these words by recording their usage frequency. The model
presented in the following calculates a dynamic probability estimate that takes
into account the user’s word choice.

Using a backoff scheme (cf. sections 3.3.2 and 4.2.3) a user lexicon (in-
cluding its dynamic update) can be integrated to a static language model as
follows:

P (wi|h) =


PB(wi|h) if PB(wi|h) > 0
α · PUL(wi) if PUL(wi) > 0

(→ CUL(wi) = CUL(wi) + 1)
0 otherwise (→ CUL(wi) = 1 if SC(wi))

(4.10)

where SC(wi) is a sanity check routine deciding if the unknown lexical item
is to be integrated or not (e.g. depending on its length, presence of numeric
characters, punctuation signs etc.). PUL(wi) is based on the maximum likeli-
hood estimate (MLE; cf. section 3.2):

PUL(wi) =
C(wi)∑s
j C(wj)

(4.11)

where s is the size of the user vocabulary. Some approaches also use a
simple indicator function I(wi, UL) returning 1

s (s = |UL|) if wi is in the user
vocabulary and 0 otherwise. The above formula already formalizes the idea
of automated integration (CUL(wi) = 1), sanity check (SC(wi)) and frequency
update of unknown words (CUL(wi) = CUL(wi) + 1).

Such an automated update is of course not a necessary part of the user
lexicon model. Integration as well as update can also be controlled by external
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actions such as manual insertion and modification. However, each of these
possibilities also includes a number of difficulties, which have to be dealt with:

• If the adaptation process is explicit, every unknown word has to be con-
firmed or rejected by the user, which can quickly cause dissatisfaction.

• In the case of implicit adaptation (i.e. every new word is integrated), the
user lexicon gets polluted by miss-spelled words or words that have been
used only once (remember for example the problem of single-word com-
pounds, described in section 3.5.4). Such a strategy has to be equipped
with a garbage collection method that automatically filters out newly in-
tegrated words which are not re-used (e.g. by applying a frequency fil-
ter). However, such an automated procedure is not without risks, since
it changes the model in an unsupervised way.

• If the system uses morpho-syntactic information for keystroke reduction,
new words represent a particular problem, since their linguistic proper-
ties are not known. They have to be guessed from the form of the given
word, but such guessing procedures are obviously error-prone. Some
systems (such as Blache & Rauzy, 2007b) rely on the user to specify the
missing linguistic information, but this increases the cognitive demands
even more, and the user’s linguistic knowledge is often very limited.

4.3.3 Dynamic user model

The idea of the dynamically updated user lexicon can be extended to a full
n-gram language model. Such a model uses as training input all incoming
data from the user, and its probability estimates are dynamically updated af-
ter every insertion of a word. This model is then interpolated with a large
base model, providing more general (and reliable) statistical estimates. The
approach of merging a large general model with a small user-oriented model
has shown to be rather helpful in various NLP tasks, such as speech recog-
nition (cf. also Woodland et al., 1998; De Mori & Federico, 1999; Bellegarda,
2004; Choi & Oh, 2006).

The application of a dynamic user model (DUM) involves three major
steps: estimation, integration and update. In the estimation step the cur-
rent probability estimates for the user model are calculated, and a smoothing
scheme is applied. We use a trigram model and we apply an absolute dis-
counting scheme (cf. section 3.3.3), which is simple and has been shown to
work reliably on smaller training corpora:

PDUM (wi|wi−2wi−1) =

{
C(wi−2wi−1wi)−D

C(wi−2wi−1) , if C(wi−2wi−1wi) > 0

α(wi−2wi−1)PDUM (wi|wi−1), otherwise
(4.12)
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The integration step of the DUM with the base model is performed by lin-
ear interpolation of the single estimates. As explained in section 4.2.3, an EM
algorithm (cf. section 3.4.1) is applied in order to estimate the coefficients. This
enables to dynamically control the influence of the DUM on the overall esti-
mates.

The update step then cares for either integrating the just inserted n-grams
(wi−2wi−1wi, wi−1wi and wi), if they do not occur yet in the model, or for aug-
menting their frequencies:

Ck+1
DUM (wi−2wi−1wi) =

{
CkDUM (wi−2wi−1wi) + 1, if wi−2wi−1wi ∈ DUM
1 if SC(wi−2wi−1wi)

Ck+1
DUM (wi−1wi) =

{
CkDUM (wi−1wi) + 1, if wi−1wi ∈ DUM
1 if SC(wi−1wi)

Ck+1
DUM (wi) =

{
CkDUM (wi) + 1, if wi ∈ DUM
1 if SC(wi)

As for the user lexicon the incorporation of an unknown n-gram is again
controlled by a sanity check routine (SC) ruling out unwanted words and n-
grams. However, such a model still has to address the problem of pollution;
it needs to be equipped with either an automated garbage collection or an
editing system that allows the user to modify or delete inappropriate elements.
Another method to deal with the garbage problem is to start every session
with an empty DUM or to flush it every few thousand words. In this case
the dynamic user model becomes very similar to a trigram cache model (cf.
section 4.3.1 and Jelinek et al., 1991).

It is clear that such an approach does not need to be restricted to one DUM
only. A word predictor could store and manage several DUMs in parallel and
apply the most appropriate one depending on the task at hand. The text style
of e-mails for example is rather different from scientific or literary writing,
therefore charging a certain DUM could be based on the given application in
use (e.g. word processor or e-mail client). In this way the adaptation capacities
of the word predictor could be maximized.

4.4 Experimental paradigm, training- and test corpora

4.4.1 Register-based model evaluation

Empirically evaluating the adaptation capacities of a given model is not
straightforward. As already explained in the introduction of this chapter, per-
sons using an AAC system have rather heterogeneous demands, and even a
single user will apply a communication system in very different situations. It
is therefore almost impossible to model the real behavior of such a user for
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evaluation, however we can test the adaptive capacities of our models by a
paradigm which approaches the diversity of real-use contexts: cross-register
evaluation.

Unlike intra-register evaluation, which uses test data from the same reg-
ister4 as the training corpora, and which is by far the most common means
of evaluating language models (cf. for example Woodland et al., 1998; Lesher
et al., 1999; Goodman, 2000; Schadle et al., 2004), cross-register evaluation uses
test corpora from several distinct registers in order to show the performance
of a model over a broader spectrum.

This evaluation paradigm is based upon the works of Biber (1988, 1993),
who clearly shows the strength of variability in the lexical and grammatical
properties of different text types (genres or registers) and who argue that the
empirical analysis of general language phenomena has to be based on corpora
from multiple registers. Cross-register evaluation is also promoted by Trnka
et al. (2007), who investigate the dependency between training and test data
on a broad range of different corpora.

In the following a detailed description of our training as well as of our
test data is given. This section is also relevant for the models and methods
presented in the following chapters, because (for the sake of comparability)
their evaluation will be based on these data as well.

4.4.2 Training data, baseline model and evaluation method

As discussed before, obtaining large corpora from different registers can be
rather complicated for languages other than English. Newspaper corpora nor-
mally represent a reasonable trade-off between diversity and size, since they
are edited by many authors and comprise various topics and (sub-)registers
(newspaper text is often itself regarded as a register). Moreover, their qual-
ity (with respect to spelling errors) is usually high (compared to text acquired
from the web) and their origin is controlled. We therefore decided to use news-
paper corpora instead of web-based data, and since our study also aims to
assure cross-language comparability, we also used newspaper text for the En-
glish model, instead of a more balanced corpus like the BNC, which also in-
cludes literary and speech data (cf. Burnard & Aston, 1998). Table 4.1 lists the
corpora that were used for training our language models. The corpus sizes
were determined by memory constraints.5

The vocabularies were determined by an algorithm taking both frequency
and orthography into account. The vocabulary size is – as usual – traded off

4Note that we use the term ’register’ here in the (loose) sense of textual category, such as Biber
(1988, 1993) did, and not in its (tight) socio-linguistic definition (e.g. of Halliday, 1978).

5The workstation on which the language models were computed had 2GB of RAM.
6Available from ELDA: http://www.elda.org/
7Available from TAZ: http://www.taz.de/
8Available from ProQuest (formerly Chadwyck Media): http://www.proquest.co.uk/
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Origin (years) Nb. of words Vocab. size
French Le Monde61998-1999) ∼44 ×106 141.078

German Die Tageszeitung71997-1999) ∼37 ×106 141.242
English The Guardian81997-1998) ∼49 ×106 133.558

Table 4.1: Training corpora and sizes used for the baseline models

between coverage and the resulting model size; a detailed study of the influ-
ence of vocabulary size on prediction performance can be found in section 6.9.
Words not present in the vocabulary were mapped onto a <UNK> tag. Punctua-
tion characters were treated as normal words, and numbers were replaced by a
<NUMBER> tag, representing an equivalence class for all numbers. In this way,
many n-grams typically containing a numeric expression are mapped onto a
single n-gram (e.g. ”<NUMBER> years old”), whose probability can then be es-
timated more reliably. It is obvious that this measure is a first step towards a
class-based model (cf. section 3.5.1), and more classes could easily be defined
in this way (e.g. <MONTH> or <DayOfWeek>). It would certainly be interesting
to investigate the effects of forming more such classes; this would however re-
quire a thorough evaluation, which could not be performed here. We therefore
used only the most obvious class, unifying a very large number of items and
thereby reducing the number of candidate types to an important extent.

For calculating the baseline model, we employed the SRI language model-
ing toolkit (cf. also section 3.4.3). A 4-gram9 LM was calculated using interpo-
lated Modified Kneser-Ney discounting (cf. Chen & Goodman, 1999; Goodman,
2001, also explained in 3.3.4), which can currently be regarded as the best per-
forming smoothing technique. We tested other smoothing schemata, but could
only confirm Chen and Goodman’s results; for this reason we will not report
any further results here. To reduce the models to a manageable size (the un-
pruned models had sizes of 800 to 950 MB), Stolcke pruning was applied with a
threshold θ of 10−7 (cf. Stolcke, 1998, and also section 3.4.2). Table 4.2 displays
the numbers of n-grams and model sizes for each model after the application
of Stolcke pruning.

These models form the baseline for all adaptation methods that will be pre-
sented here and in the following chapters. The evaluation measure will be the
keystroke saving rate as detailed in section 2.5.2 with respect to a list containing
5 words (ksr5), if not marked otherwise; words that have been shown once in
the list, will be filtered until the current word is completed (cf. section 6.3.2).

For evaluating a given language model on different test corpora, we de-
veloped a testbench, which simulates the behavior of a real user applying the
predictor to type text. This device reads in a test corpus character by character
and compares at every insertion the contents of the prediction list to the origi-

9For a comparison of models of different n cf. section 3.4.
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French German English
1-grams 141.078 141.242 133.558
2-grams 1.158.832 1.308.970 1.470.967
3-grams 839.049 657.614 999.648
4-grams 348.864 278.617 358.694

Model size 69 MB 67 MB 77 MB

Table 4.2: Numbers of n-grams used and model sizes for the baseline models

nal text; if the intended word is present, it is added to the input, and its current
probability estimate (as calculated by the underlying model) is determined as
well. In this way keystroke savings, cross entropy or perplexity can be com-
puted. The testbench also allows for parameterizing various factors, such as
maximum n-gram order, interpolation coefficients, cache sizes (and functions)
etc. All parameters and results are written to log files. Figure 4.3 shows the
interface of our testbench.

Figure 4.3: User interface of the testbench (v. 1.6)

4.4.3 Test data

As mentioned before, cross-register evaluation assesses a model on corpora
from several (sufficiently distinct) language registers. The registers for our test
corpora were selected with respect to their distinctness and (to some extent)
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to their importance for an AAC context. Apart from intra-register data (news-
paper), text from the following registers was acquired: literature (19th century
novels), speech (dedicated dialogue) and e-mail (personal correspondence).

Especially the latter two registers are very interesting for our evaluation,
since they represent ’real-use’ language, containing lexical and grammatical
errors and inserted corrections. It was tried to use test corpora of similar sizes,
but – due to availability – this could not be achieved for the speech and the
e-mail register. Table 4.3 gives an overview of the test corpora and their sizes.

Register Identifier Description Nb. of words
news-fr From L’Humanité (2000) 58.457

News news-de From Süddeutsche Zeitung (1999) 56.031
news-en From The Guardian (2000) 53.070

lit-fr From Germinal by Emile Zola
(first published in 1885)

50.251

Literature lit-de From Effi Briest by Theodor
Fontane (1894)

54.844

lit-en From The Picture of Dorian Gray by
Oscar Wilde (1891)

53.640

speech-fr Transcriptions of spontaneous
spoken dialogues between
French tourist agents and cus-
tomers; from the OTG corpus10

15.435

Transcribed
Speech

speech-de Transcriptions of telephone
conversations (making appoint-
ments); from the Verbmobil11

project (German part)

20.729

speech-en Transcriptions of telephone
conversations (making appoint-
ments); from the Verbmobil project
(English part)

20.788

email-fr Personal e-mails (from a native
speaker, sent folder, replies re-
moved)

44.946

E-mail email-de Personal e-mails (from a native
speaker, sent folder, replies re-
moved)

15.774

email-en From the Enron e-mail dataset12;
personal sent folder from one user
account, replies removed

22.151

Table 4.3: Overview of the evaluation corpora used
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This set of test corpora will be used throughout the evaluation part of this
and the following chapter. When subsets hereof are tested, it will be clearly
marked. Otherwise the identifiers – as displayed in Table 4.3 – will be used.
For demonstrating parameter effects, tests are performed on the intra-register
corpora (news-(fr,de,en)).

4.5 Results

4.5.1 Baseline model

Table 4.4 shows the baseline evaluation results (ksr5) for all 12 test corpora. It
can be recognized immediately that there is an important difference between
the intra-register corpora (newspaper) and the corpora from the other registers.
Whereas we obtain ksr5 results of more than 50% for the newspaper corpora,
the other registers show significantly lower results (up to -11,8% for lit-fr).

Register French German English
Newspaper 57,8% 51,6% 55,5%
Literature 46,0% (-11,8) 44,9% (-6,7) 49,8% (-5,7)

Speech 48,3% (-9,5) 49,1% (-2,5) 48,5% (-7,0)
E-mail 48,6% (-9,2) 48,0% (-3,6) 49,4% (-6,1)

Table 4.4: Results (ksr5) for the different corpora and languages on the baseline
models

A second remarkable aspect are the significantly lower results for Ger-
man, especially for the newspaper corpus. It can probably be explained by
the rather complex noun morphology (3 genders, 4 cases), leading to more in-
flected forms, but also by the problem of compounding (as discussed in section
3.5.4). This becomes apparent if we regard the proportions of unknown words
(OOV) for the different corpora. Table 4.5 displays the percentages of OOVs
for all test corpora.

As can be seen from Table 4.5, apart from the e-mail corpus, the OOV
proportions of the German corpora are two to three times higher than of the
French and English corpora. For news-de, almost every fifteenth word was
not in the respective vocabulary, which has of course a strong impact on the
keystroke savings, since such words cannot be predicted. For better under-
standing the nature of OOV words, these words were collected during eval-
uation, and samples were manually categorized for the news and the speech

10(cf. Nicolas et al., 2002)
11http://www.phonetik. uni- muenchen.de/Forschung/Verbmobil/VerbTRL.html
12This corpus was made public during the legal investigation concerning the Enron corpora-

tion after its bankruptcy in 2001. Cf. http://www.cs.cmu.edu/∼enron/
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French German English
Newspaper 2,2% 6,4% 2,4%
Literature 2,4% 4,5% 1,5%

Speech 1,3% 2,5% 0,5%
E-mail 5,1% 4,9% 5,5%

Table 4.5: Percentage of out-of-vocabulary words (OOV) for all test corpora

register. Table 4.6 gives an overview of the results.

news-fr speech-fr news-de speech-de news-en speech-en
Numeric exp. 36% 12% 12% 24% 30% 26%
Proper names 45% 47% 13% 32% 25% 39%
Compounds 3% 0% 51% 26% 16% 10%
Other nouns 4% 14% 4% 1% 6% 5%
Verbal exp. 4% 13% 4% 6% 7% 6%
Adjectives 3% 4% 5% 2% 10% 3%
Misspellings 3% 4% 5% 3% 4% 3%
Other 2% 6% 6% 6% 2% 8%
Total number: 1273 196 3589 516 1291 97
Sample size: 100 100 100 100 100 97

Table 4.6: Percentage of out-of-vocabulary words (OOV) for all test corpora

The first observation is expected: The largest proportions of OOV words
are either numeric expressions or named entities; in the speech corpora we
find more proper names than in newspaper. However, for the German corpora
we find very high rates of compound words (51%; 26%) among the OOVs13.
Interestingly, the number of compound words in English is higher than ex-
pected (this is mostly due to hyphenated compounds (e.g. Euro-obstructionist,
tea-plantation). For French however the number of compounds (e.g. psychosoci-
ologique ’psycho-sociological’, hyperconcurrence ’hyper-competition’) is almost
negligible (< 3%).

4.5.2 Cache model

The cache model comprises three critical parameters: (i) the interpolation coef-
ficient λcache integrating the cache estimates to the combined function, (ii) the

13Some elucidating examples for non-German speakers: Giant words like ’Institutsein-
weihungsfeier’ (25 characters) ’inauguration ceremony of the institute’ , ’Filmproduktionsge-
sellschaften’ (29 chrs.) ’film production companies’, ’Pflanzenschutzmittelverordnung’ (30 chrs.)
’ordinance on plant protectants’ did occur in our corpora!
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cache function and (iii) the cache size. The optimal coefficient is not very hard
to find, here the EM algorithm (as introduced in section 3.4.1) can be applied.

While it certainly is more appropriate to apply a cache function which fol-
lows the recurrence probability (as displayed in Figure 4.2), it is however inter-
esting to see how strongly such a function can improve the results with respect
to a constant function. Table 4.7 shows the results of the constant and the two-
fold exponential cache function, using the parameters specified in section 4.3.1
for the newspaper corpora.

Cache function λcache news-fr news-de news-en
Baseline 0 57,78% 51,56% 55,49%
Constant 0,09 - 0,11 58,05% (+0,27) 52,01% (+0,45) 55,87% (+0,38)

Two-fold exp. 0,09 - 0,12 58,20% (+0,4) 52,18% (+0,62) 56,03% (+0,54)

Table 4.7: Results (ksr5) for the constant and the two-fold exponential cache
function (cache size = 1000)

The results in Table 4.7 show that the exponential cache function yields
better results than the constant function; however the gain is not very high
(+0,14% - +0,17% in ksr5). The coefficients – as determined by the EM algo-
rithm – are also comparable, librating around 0,1. It therefore can be concluded
that whereas an important part of the potential of a cache is already exploited
by a constant function, an exponential function models the recurrence proba-
bility of terms even better.

The third parameter to be considered is the size of the cache. To find out
about its influence, several cache sizes ranging from 50 to 1.500 were tested.
Table 4.8 shows the results for all sizes tested on the three newspaper corpora.

Cache size λcache news-fr news-de news-en
0 (Baseline) 0 57,78% 51,56% 55,49%

50 0,06 - 0,07 57,96% 51,84% 55,69%
100 0,08 - 0,09 58,11% 52,01% 55,93%
300 0,09 - 0,10 58,18% 52,10% 55,98%
500 0,09 - 0,12 58,18% 52,19% 56,02%

1000 0,10 - 0,12 58,20% 52,18% 56,04%
1500 0,10 - 0,12 58,20% 52,16% 56,03%

Table 4.8: Results (ksr5) for different cache sizes, using the two-fold exp. de-
caying cache function

The development of the results is very similar for all three corpora: The
advantage of the cache model grows quickly from already 50 elements to 300,
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then the additional gains become marginal. After a size of 1000 the gains
become stable or decline slightly. Setting the size to 1000 elements therefore
seems to be a well-balanced solution. Note that ”flushing” the cache (i.e. emp-
tying after an article boundary) was not applied, because - due to missing cues
- such a behavior cannot be achieved in a real-use situation.

Table 4.9 gives an overview on the results of the cache model for the cor-
pora from all registers (using the two-fold exponential cache function with the
parameters given in 4.2, a cache size of 1000 and a λcache of 0,11).

French German English
Newspaper 58,2% (+0,4) 52,2% (+0,6) 56,0% (+0,5)
Literature 46,4% (+0,4) 45,2% (+0,3) 50,0% (+0,3)

Speech 51,0% (+2,7) 50,7% (+1,6) 51,1% (+2,6)
E-mail 49,0% (+0,4) 48,1% (+0,2) 50,1% (+0,7)

Table 4.9: Results of the (two-fold exp. decaying) cache model for all test cor-
pora

The gains of the cache model for the written language corpora (news, liter-
ature and e-mail) are surprisingly close, ranging from +0,2% to +0,6%; differ-
ences between the languages cannot be determined. For the speech corpora
however we obtain a completely different picture: Here, the gains of the cache
model are much stronger (up to +2,7% with respect to the baseline). This is
probably due to the high number of repetitive words and phrases in dedicated
speech (e.g. ”I want to”, ”do you have”); moreover the vocabulary in speech
is usually much more restrained than in written text. Once a word has been
added to the cache, it is therefore more probable to re-occur.

In general it can be stated that the cache model yields small but reliable
gains over all registers and languages. While remarkable differences between
languages cannot be recognized, we observe an important performance dis-
crepancy for oral and written corpora.

4.5.3 User lexicon

For the evaluation of the user lexicon two aspects have to be considered: The
plain reduction of OOV words and its overall impact on keystroke savings.

Table 4.10 shows the OOV proportions (and the reduction from the base-
line) for all test corpora. All tests were performed on an initially empty UL.
Elements of length smaller than 2 or containing numbers or punctuation signs
were not added to the lexicon.

The OOV reduction resulting from the user lexicon is quite substantial: For
almost all corpora the proportion of OOVs could be reduced by 30%, for some
(e.g. lit-fr) even over 60%. This shows that an automatically updated user
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French German English
Newspaper 1,2% (-1,0) 4,3% (-2,2) 1,5% (-1,0)
Literature 0,9% (-1,5) 2,9% (-1,6) 1,1% (-0,4)

Speech 0,6% (-0,7) 0,9% (-1,6) 0,2% (-0,3)
E-mail 2,4% (-2,7) 3,8% (-1,1) 3,6% (-1,9)

Table 4.10: Reduction of OOV by the user lexicon model for all corpora

lexicon is indeed effective for reducing unknown words. But how does this
reduction affect keystroke savings? Table 4.11 gives an overview on the results
and deviations from the baseline. Frequencies (and likewise the probability
estimates) of OOVs were dynamically updated after every word.

French German English
Newspaper 58,2% (+0,4) 52,6% (+1,0) 55,9% (+0,4)
Literature 47,5% (+1,5) 45,9% (+0,9) 50,3% (+0,5)

Speech 48,5% (+0,2) 50,0% (+0,9) 48,7% (+0,2)
E-mail 49,4% (+0,8) 48,7% (+0,7) 50,1% (+0,7)

Table 4.11: Results for the user lexicon (ksr5) for all test corpora

The effect of the user lexicon on keystroke savings is small but beneficial for
all corpora. It seems a little higher for the German corpora, which is obviously
due to the higher OOV rates and the stronger OOV reductions achieved (cf.
Table 4.10). A significant outlier is the result for lit-fr (+1,5%), but, as can be
seen from Table 4.10, the OOV reduction achieved by the UL for this corpus is
also quite strong (over 60%).

We did not further evaluate the evolutionary properties of the user lexicon;
this was however done for the dynamic user model (cf. Figure 4.4). Since that
model basically extends the idea of a dynamically updated user lexicon, it can
be assumed that its performance evolution will not be too different.

4.5.4 Dynamic user model

As for the user lexicon it is difficult to assess the long-term effect of the dy-
namic user model, since it evolves with the user input, and it can be expected
that the more input the model receives the better it will perform. The test cor-
pora considered here are however of limited size, so the theoretical maximum
of performance improvement cannot be found in this way. The results never-
theless give an important indication of the potential of such an approach. As
before all tests were performed on an initially empty user model, the DUM
was updated after every completed word (marked by either an empty space
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or a punctuation sign), and unknown strings were automatically integrated,
if they were more than 2 characters long and did not contain any number or
punctuation characters. Table 4.12 gives an overview on the ksr5 results for all
test corpora and deviations from the baseline.

λDUM French German English
Newspaper 0,21 - 0,26 58,5% (+0,7) 54,6% (+3,0) 56,3% (+0,8)
Literature 0,27 - 0,31 50,6% (+4,6) 50,0% (+5,1) 53,0% (+3,2)

Speech 0,42 - 0,53 57,7% (+9,4) 57,5% (+8,4) 56,9% (+8,4)
E-mail 0,28 - 0,38 53,0% (+4,4) 51,6% (+3,6) 54,1% (+4,6)

Table 4.12: Results of the Dynamic User Model for all test corpora

As Table 4.12 shows, we get an important increase of keystroke savings
(up to 9,4%) for all extra-register corpora. But even for the newspaper corpora
we observe some improvement, which is surprising since we would assume
the newspaper corpora to be already well adapted to the language model.
Whichever test corpus considered, keystroke savings remain higher than 50%,
which is a considerable achievement.

Interestingly, as with the cache model we find the highest gains in all lan-
guages again for the speech corpora. And again this is probably due to the
important stylistic differences, to the rather limited vocabulary of spoken lan-
guage and also to the high number of repetitive words and phrases. Such
phrases can be predicted very easily by the DUM once they have been inte-
grated. The important performance gain can also be recognized by the coeffi-
cients controlling the influence of the DUM on the combined model, as calcu-
lated by the EM algorithm. Even for the intra-register corpora the final λDUM
scores give more than 20% of the probability mass to the user model. But the
extra-register corpora receive even significantly higher scores; for the speech
corpora we observe λDUM -values of up to 0, 53, which means that here the in-
fluence of the DUM (trained on as little as 15.000 to 20.000 words!) is larger
than the baseline model.

To assess the learning speed of the DUM, we also observed the ksr evolu-
tion during the prediction of the test data. Keystroke savings with and without
DUM were measured every 2.000 words, and their difference was recorded.
The curves in Figure 4.4 show the ksr advantage over the baseline for two test
corpora (lit-fr and email-fr).

As the learning curves in Figure 4.4 show, the DUM-based model already
performs 2% better than the baseline after only 2.000 words, and it reaches a
plateau of 5% to 6% after approximately 20.000 words. This implies that the
training time needed in order to take advantage of the DUM-based model is
not very long.

The evolution of the DUM performance can also be estimated by observing
the λDUM coefficients, as estimated by the EM algorithm. Figure 4.5 displays
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Figure 4.4: Evolution of ksr advantage (+%) of the Dynamic User Model over
the baseline for two test corpora (email-fr and lit-fr)

the development of the coefficients for the same test corpora as above (email-fr
and lit-fr).

The curves in Figure 4.5 look very similar: After a quick rise at the first
few thousand words the curves flatten and finally seem to approach a level
after app. 50.000 words. This is in accordance with the development of the
performance gain, and it also shows that learning on a few thousand words is
already sufficient in order to improve the overall performance.

To estimate the theoretical limits of this model, another test was performed
which is obviously considered illicit under standard experimental conditions,
namely the evaluation of the DUM after it has already integrated the test cor-
pus (2nd pass). Therefore the results, as displayed in 4.13, are to be taken with
a pinch of salt, however they show how far keystroke savings can be pushed
when some text is to be predicted once again.

news-fr lit-fr news-de lit-de news-en lit-en
ksr5 1st pass: 58,5% 50,6% 54,6% 50,0% 56,3% 53,0%
ksr5 2nd pass: 72,9% 70,0% 77,6% 71,7% 74,7% 70,2%

Table 4.13: Results (ksr5) for the newspaper and the literature corpora, before
(1st pass) and after (2nd pass) they have been learned by the DUM

The results of the second pass (line 2 in Table 4.13) are quite remarkable.
All keystroke savings are over 70%, the German newspaper corpus even at-
tains 77,6%, which means that nearly every word was displayed immediately
in the list and only had to be selected (this result is not far from the theoretical
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Figure 4.5: Evolution of λDUM (as calculated by the EM algorithm) for two test
corpora (email-fr and lit-fr)

maximum of 84%, cf. section 2.5.2). The coefficients λDUM vary from 0,46 to
0,58. This means that the DUM has been able to learn the statistical charac-
teristics of the test corpora very well; moreover, the combined model seems to
be react in a rather flexible way to messages it has already learnt. It is obvi-
ous that keystroke savings of over 70% will not be achieved in practice, it can
however be supposed that the production of messages that have already been
integrated will be significantly facilitated by this model. And this property is
rather important for an AAC context, where a considerable amount of mes-
sages (e.g. functional phrases such as ”I am hungry”, ”I feel cold”) are repeated
quite often. The dynamic user model learns such messages without any addi-
tional effort, and – as can be seen from the results presented above – it is able
to retrieve already learned phrases in a rather efficient manner.

4.5.5 Comparison with related work

Considering the results reported above the question arises how they can be
interpreted with respect to results from similar works. It is obvious that a
straight comparison of our results to others is cannot be achieved, since they
were obtained on varying training and test data; moreover many works do not
describe their prediction methods in full detail. Still, we deem it important to
assemble results of other works, not in order to compare them directly but to
enable a more intuitive understanding for their interpretation.

A first work being relevant in this context has already been mentioned in
the introductory part: Lesher et al. (2002) have investigated the performance of
human subjects in a word prediction task. For their experiment they presented
a few sentences as initial context to the subjects and then asked them to gener-
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ate a list of the six words that they deemed most likely to follow. If the correct
word occurred in the list, it was added, if not, the next character was provided
(similar to the Shannon game (cf. Shannon, 1951, and also section 3.1.2)). In
this way they could calculate the keystroke saving capacities of their subjects.
Three conditions were tested: In the ’no help’ condition, the subject had to per-
form the task without any further information; in the ’simple help’ condition a
frequency-ordered word list could be consulted, and the ’advanced help’ set-
ting provided in addition more advanced statistical information for the given
context. The subjects of the ’no help’ group arrived at an average ksr6 of 49%;
the ’simple help’ subjects obtained 54%, and in the ’advanced help’ condition
a ksr6 of 59% was measured (cf. Table 4.14). Another finding of this study
was that the amount of context provided seemed to play a major role for the
performance: Humans seem to rely much more on contextual clues than on
local frequency information. This explains also the significant improvements
of the ’simple’ and ’advanced help’ conditions, where such information was
provided in addition.

One of the first systems whose prediction performance was systematically
evaluated, was Profet (cf. Carlberger et al., 1997, and also section 2.4.1). The
system has been developed for several languages (Swedish, English, Danish
and Norwegian, among others). Its word predictor uses unigram and bigram
information as well as a cache component and a user lexicon. Keystroke sav-
ings were calculated on rather small texts (4000 to 6000 characters), the results
vary between 33% (Danish) and 37% (English). This is a stark contrast to our
results, dropping in no condition under 44% even for the baseline model. Un-
fortunately, the authors do not further analyze their results, nor they present
details on the test data used, so it is difficult to find reasons for such an impor-
tant difference.

In the HandiAS project (Le Pévédic, 1997; Maurel & Le Pévédic, 2001, cf.
also section 2.4.1) probabilistic finite state automata (PFST) are applied for pre-
diction. These automata analyze shallow syntactic features (such as number,
gender and tense) of the left context and constrain thereby the predicted terms
to the ones which are syntactically possible. The system also comprises a user
lexicon to which unknown words are added, and the probabilities of the state
transitions evolve with the user input. Using these techniques, the system ar-
rives at a ksr5 of 43,5%, however no further information on the kind of test
corpus is given.

SibyMot (Schadle et al., 2004) the word predictor developed for the 2003 ver-
sion of our AAC system SIBYLLE (Schadle, 2003, cf. also section 2.4.1), makes
use of a chunk-based language model for prediction (cf. section 3.5.2). Un-
like the two approaches described above it does not integrate any adaptive
features, however significantly higher keystroke savings are reported, reach-
ing up to 57,1%. But even the baseline model (trigram) is reported to achieve
a ksr5 of 55,8%, meaning an advantage of +1,3% for the chunk-based model.
The rather high results of SibyMot are however also due to the nature of the
test data, stemming from the same register as the training corpus (newspa-
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per). The size of the training data was however rather small (2 million words),
which explains the difference to our model, being trained on much more data
(44 million words). As shown in Table 3.4, our trigram model achieved a ksr5
of 57,6% in a comparable condition.

The Fasty language component (cf. section 2.4.1) has been evaluated by
Trost et al. (2005). The predictor is based on a combination of several strategies
such as word bigrams, PoS trigrams, and a FST-based grammar component, a
prediction method for German compounds and a user lexicon. The advantages
of each of these methods have not been evaluated in full detail, however all
languages were evaluated. The ksr5 results vary from 48% for French and
Swedish to 51% for Dutch and 52% for German. Interestingly, in contrast to
our results, the French version of Fasty scores worse than the German one.

The French project PCA is described by Blache & Rauzy (2007b). Its word
predictor combines a large lexicon (320.000 words), a morphosyntactic based
on property grammars (cf. Blache & Rauzy, 2006) and a user model, saving each
phrase typed in a tree structure. This predictor arrives at a ksr5 of nearly 50%,
which is an advantage of approximately 4% over the unigram baseline (ksr5 ≈
46%). Moreover it was observed that the user model learns very quickly; after
2000 words the ksr showed an advantage of more than 2% over the baseline.
This is in straight accordance with our results (cf. section 4.5.4, Table 4.4). Table
4.14 gives an overview on the different results reported above.

System/Reference Prediction method Language ksr5

Human (Lesher et al., 2002)
No help condition

English
49%14

Simple help (word list) 54%
Adv. help (predictor) 59%

Bigram + cache + user
lexicon

Swedish 33,1%
Profet English 37,3%

(Carlberger et al., 1997) Danish 32,9%
Norwegian 35,6%

HandiAS PFST French 39,2%
(Maurel & Le Pévédic, 2001) Adapt. PFST + user lexicon French 43,5%

SibyMot Trigram French 55,8%
(Schadle et al., 2004) Trigram + Chunk model 57,1%

Bigram + PoS-Trigram +
grammar model +
compound prediction +
user lexicon

German 52,02%
FASTY French ≈ 48%

(Trost et al., 2005) Swedish ≈ 48%
Dutch ≈ 51%

PCA Unigram + user model + French 50%(Blache & Rauzy, 2007b) morphosyntactic pred.

Table 4.14: Keystroke savings (ksr5) reported by different works

14The results reported by Lesher et al. (2002) are based on a prediction list of 6 items (ksr6).
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4.6 Conclusion

This chapter started with the observation that the performance of language
models depends to a considerable extent on the similarity of the training data
to the actual task or register. Our experiments showed a performance loss of
up to 20% on corpora from registers other than the training register; a deterio-
ration, which has to be expected under real-world conditions as well.

In order to overcome the effects of training dependency, we presented
three techniques to adapt an LM to the user’s style of communication: a cache
model, a user lexicon and a dynamic user model, interpolating a large static
language model with a small LM trained on user input.

For the cache model, evidence has been provided that the effect of word re-
currence is best modeled by a twofold, exponentially decaying distance func-
tion. As for the user lexicon, we presented a model which dynamically inte-
grates new words and their usage frequencies with no need for user inter-
action, which is an important feature for an AAC system. Finally, the dy-
namic user model is also dynamically updated so that no further intervention
is needed.

We then gave a detailed description of the data involved in training and
testing as well as a presentation of the evaluation paradigm applied (cross-
register evaluation), and in the last part of the chapter we evaluated each of
these models in detail:

Whereas all three approaches proved to be beneficial in terms of keystroke
savings, the advantages of the cache model and the user lexicon are moder-
ate (from +0,2% to +2,7% gain of ksr5). The dynamic user model however,
showed important gains (up to +9,4%) for all corpora. From the superiority
of the latter model we conclude that local syntactic information, as provided
by the DUM, is of much more importance for prediction than simple lexical
knowledge. Moreover, it could be shown that this model is very flexible: After
being trained on as little as 2.000 words it performs considerably better than
the baseline.

This chapter presented adaptation techniques, focusing on lexical and local
syntactic information. A path that has yet to be pursued is the use of seman-
tic information, acting on a more global level. This will be the subject of the
following chapter.
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Chapter 5

Semantic adaptation

J’ai cependant compris la poésie
de ces jeux de l’esprit le jour où,

comme j’entreprenais
de réclamer mes lunettes,

on m’a élégamment demandé
ce que je voulais faire avec la lune . . .

JEAN-DOMINIQUE BAUBY
(Le scaphandre et le papillon, 1997)

While we have previously presented a number of techniques enabling a word
predictor to adapt to the user, the focus of this chapter will be models and
methods that exploit long-distance semantic dependencies and thereby adapt
the predictor to the current semantic context. As in the previous chapter, we
first motivate why this kind of adaptation is beneficial for a prediction task
(5.1) and then give an overview on the different models making such an adap-
tation possible (5.2). In section 5.3 we present in detail the approach that we
have chosen for our predictor. It makes use of Latent Semantic Analysis, a
data-driven technique, based on the distributional properties of words in text,
which is able to model such large-span semantic relationships as are missing
in conventional n-gram models. After a description of different techniques of
integration (5.4) in section 5.5 we present the results of an extended evaluation
of our semantically adaptive prediction model.

5.1 Semantic information helps predicting words

In chapter 3 it was discussed that statistical language models normally exploit
an extremely short context. This means that syntactic and semantic depen-
dencies of longer distance cannot be described by such models. Especially
semantic constraints however play an important role for the anchoring or in-
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terpretation of a message within a meaningful situational context. Humans
make use of world knowledge for this semantic anchoring, they rapidly adapt
their expectation to the current semantic preconditions.

In cognitive psychology this phenomenon has been studied extensively:
In semantic priming experiments it was clearly shown that the recognition of
a target word in a lexical decision task can be strongly influenced by the pre-
sentation of a semantically related prime; e.g. a word like cat is recognized
much quicker, when a semantically close term like dog has been presented be-
fore. Psycholinguistic theories explain this effect by an activation spread of the
semantic features of a recognized concept towards other concepts sharing sim-
ilar features (cf. Plaut, 1995). The spreading activation network model by Collins
& Loftus (1975) describes the mental lexicon as a semantic network consisting
of concepts as nodes and semantic (or associative) relations as edges. When a
concept is invoked, its node is activated and this activation spreads over the
edges to related concepts that can then quicker be accessed.

This important property of human language processing is of course also
highly relevant for prediction. When predicting a word, humans exploit se-
mantic information to a large extent. It was found by Lesher et al. (2002) that
the performance of humans in a word prediction task deteriorated strongly
when they were provided with insufficient context information. This can be
illustrated by a short example. Consider the following context:

Ex. 1 in the first

Here, it is nearly impossible to guess the following word. However, if more
semantic information is provided, it can become much easier. Consider for
example the following beginning of a phrase:

Ex. 2 Whereas the game was quite aggressive in the first

Here, humans would almost instantly predict a temporal quantity like
quarter or halftime to follow. The first part of the sentence opens a semantic
context in which words like quarter or halftime become much more likely than
they would be otherwise, in other words, the context primes the occurrence of
these terms. If the context is limited to the last two or three words (as in the
first example), this can be achieved to a minimal extent only.

5.2 Using semantic information: Previous work

It was recognized very soon that the exploitation of semantic knowledge can
help in a prediction task. For this reason we find semantically oriented ap-
proaches already in the first large-scale AAC projects. They were mostly based
on structural or logical paradigms. Later, trigger-based approaches were pre-
sented that make use of word contiguities, determined on text corpora. Topic
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models represent a more document centered way to access semantics. In the
following, these approaches will be presented and discussed.

5.2.1 Structural approaches

The first prediction methods that tried to incorporate semantic knowledge into
an AAC system were based on structural paradigms. A straight-forward ap-
proach was presented in the work of Hunnicutt (1989). Here, a part of the
lexicon was manually labeled with semantic categories such as Living, Moving,
Color etc. The predictor was then adapted according to the semantic categories
of the words appearing in the context; words belonging to the same category
were given higher priority.

The KOMBE project (Guenthner et al., 1992, 1993, cf. also section 2.4) in-
tegrated semantic knowledge in form of rules and a conceptual model. The
rules link each lexical item to its semantic interpretation, which is based on the
lambda calculus. For example a verb like ’chanter’ (to sing) is represented as:

λx chante(x)

The semantic interpretation of a phrase like Max chante (’Max sings’) is
obtained by applying the semantic representation of the subject to the above
formula:

λx chante(x): [(λp[p Max]) (λx chante(x)]
= [(λx chante(x)) Max]
= chante(Max)

The conceptual model then assures the conceptual validity of the interpre-
tations by imposing further constraints. It consists of a set of domains, a set of
individuals and a set of relational symbols, from which formulas in first order
logic can be built.

Since this model performs a rather deep semantic interpretation of the in-
serted message, it is able to exclude semantically implausible phrases such as
”La table chante” (”The table sings”). However, a detailed evaluation consider-
ing keystroke reduction or communication speed was not published.

The semantic parsing module of the Compansion system (McCoy & De-
masco, 1995, , cf. also section 2.4) is based on frame semantics (cf. Fillmore,
1968). Here, each verb is represented as a frame including one or several roles
or cases to be filled, each of which has its own semantic constraints; the nouns
of a phrase are then considered as case fillers with respect to the given verb
frame. Typical cases are AGEXP (Agent/Experiencer), GOAL or THEME. For
each case filler preferences can be specified, so that e.g. humans or animate
objects are preferred over inanimate objects.

During composition the semantic parser starts with an empty frame, where
all roles are represented but unfilled. After the verb was parsed all roles that
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cannot be filled are removed from the frame and the remaining roles are suc-
cessively filled with the noun representations, taking into account the specified
case filler preferences. For each possible filler configuration a heuristic value
is calculated from the preferences, and in the end the interpretation with the
highest value is retained. For example, the preferred frame semantic interpre-
tation of the sentence ”The apple was eaten by John” would look as follows (from
McCoy & Demasco, 1995):

(25 DECL
(VERB (LEX Eat))
(AGEXP (LEX John))
(THEME (LEX Apple))

)

The number in the first line corresponds to the computed overall prefer-
ence value for this interpretation.

As before, a profound evaluation of this approach has not been published,
therefore no conclusions about the applicability of this approach can be made.
It is however obvious that a parser relying on frame semantics requires a large
amount of hand-coded linguistic knowledge (each verb frame has to be de-
fined), which is hard to achieve on a large scale. Projects like the Berkeley
FrameNet (Ruppenhofer et al., 2006), containing roughly 800 frames and 10.000
lexical units, could however provide a valuable resource here.

Likewise, other large-scale lexical or ontological databases, such as Word-
Net (Fellbaum, 1998) or OpenCyc1, providing hand-coded semantic informa-
tion on words, concepts and their relations, could be employed. It would be
interesting to see to what extent this kind of semantic information can help in
prediction, especially in comparison with the distributional approaches that
will be presented in the following.

5.2.2 Trigger models

A rather different approach to exploiting semantic information for prediction
is based on the distributional properties of words. In the last chapter (section
4.3.1) it was shown that words are not evenly distributed in a corpus but tend
to occur in bursts; after a word has occurred one time it is more likely to re-
occur than expected. This is however not only true for the word itself but for
other, associated words; the occurrence of a word wi can make the occurrence
of a word wj more likely. This distributional form of association can be calcu-
lated by an information-theoretic measure: mutual information (MI). This mea-
sure calculates the amount of common information in any two variables, but
it can also be interpreted as a measure of dependence between these variables.
It is calculated as follows:

1http://www.opencyc.org
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MI(X,Y ) =
∑
x∈X

∑
y∈Y

P (x, y) · log2

P (x, y)
P (x) · P (y)

(5.1)

where X and Y are two random variables comprising {x,¬x} and {y,¬y}
(i.e. presence and absence of the event x, y), respectively. Regarding the co-
occurrence of two words in text, the joint probability P (wi, wj) is calculated
with respect to the frequency of co-occurrence of the events wi, ¬wi and wj ,
¬wj in a pre-defined text window.

A closely related measure is pointwise mutual information (PMI), which is
based on positive evidence only. Regarding the occurrence of two words wi
and wj it is defined as follows:

PMI(wi, wj) = log2

P (wi, wj)
P (wi) · P (wj)

(5.2)

Pointwise mutual information was introduced as a lexical association norm
by (Church & Hanks, 1989). They showed that when the context window is
sufficiently large (≥ 5 words), word pairs with a high PMI (which is measured
in bits) are very often semantically or associatively related. This finding was
confirmed in many other works since (cf. Brown et al., 1992; Rosenfeld, 1996;
Tillmann & Ney, 1997; Rapp, 2002). Table 5.1 shows some of the strongest
PMI associations including ’doctor’ from (Church & Hanks, 1989), calculated
on an Associated Press corpus of 15 million words; the size of the co-occurrence
window was ±5 words.

PMI wi wj

11,3 honorary doctor
11,3 doctor dentist
10,7 doctor nurse
9,0 examined doctor
8,9 doctor treat
8,7 doctor bill
8,7 doctor visit
8,6 doctor hospital
8,4 nurse doctor

Table 5.1: Word pairs with strongest PMI values including ’doctor’, from
(Church & Hanks, 1989)

Regarding the terms occurring with ’doctor’ it becomes obvious that PMI
is indeed capable of identifying semantically related terms (e.g. ’dentist’ or
’nurse’), however these relations do not seem systematically related (e.g. by
synonymy or hyponymy).
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Many other distributional relatedness measures were developed since (e.g.
the log-likelihood ratio (Dunning, 1993), χ2 test or the Jensen-Shannon divergence
(Dagan et al., 1999)2). However, in a large-scale evaluation Terra & Clarke
(2003) could show that MI and PMI perform best in identifying semantic rela-
tions in a range of different tests; interestingly, MI and PMI had very similar
performance in all settings.

This kind of long-distance information can be beneficially exploited in
many NLP tasks like speech recognition (cf. for example Brown et al., 1992;
Rosenfeld, 1996) or word prediction (cf. Matiasek & Baroni, 2003; Li & Hirst,
2005). Therefore, two words showing a high relatedness score (as MI) are con-
sidered as a trigger-target pair. Whenever the trigger word occurs in the con-
text, the probability of the target word is enhanced. Tillmann & Ney (1997)
have presented different methods to integrate trigger information to a stochas-
tic language model. Here, only the single-trigger, linear interpolation method
will be explained, basically following the idea of the cache model. For a given
base probability Pbase(w|h) and a set of trigger-target pairs (a, b) the adapted
probability is calculated as follows:

P ∗(w|h) =

{
[1− q(b|a)] · Pbase(w|h) + q(b|a) if a ∈ h,w = b

[1− q(b|a)] · Pbase(w|h) otherwise
(5.3)

q(b|a) is the trigger parameter controlling the influence of the trigger com-
ponent. Depending on the model under consideration, it takes into account
the association strength, the distance from the trigger, and, as Tillmann & Ney
(1997) show, it can be optimized by an EM algorithm (cf. 3.4.1).

It has been made obvious that this model is very similar to the cache model,
presented in the previous chapter (4.3.1). And indeed, as Rosenfeld (1996)
shows (using mutual information), self-triggers (i.e. trigger pairs of the form
(a, a) ) are usually the most powerful triggers. He found for over 90% of the
target words the self-trigger among the 6 strongest triggers. Thus, most of the
time a trigger model will also incorporate cache information.

5.2.3 Topic-oriented models

While the trigger model introduces semantics at the word level, another fam-
ily of approaches aims at integrating global, document-level semantics. Topic-
oriented models assume that a document or message to be written has a certain
theme or topic. When this topic can be identified, the underlying model can
be adapted accordingly so that the topic-specific vocabulary and/or preferred
phrase structure can be favored. While the basic idea of these approaches is not
necessarily probabilistic, most works are based on stochastic language models.

2A good overview on different measures can be found on http://www.collocations.de/
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The standard approach is to train a separate language model for each given
topic and then to refer to the model (or models), which is (or are) most ap-
propriate for the given topic at hand. In general, three major tasks have to be
addressed by topic-based approaches:

1. determining a reasonable number and partitioning of topics

2. assigning each document of a given corpus to one (or more) of these
topics

3. identifying for a given context the most appropriate topic(s)

Each of these tasks includes some difficulties. Considering that the defi-
nition of topic is a rather fuzzy one and cannot be based upon independent
criteria, the identification of an optimal set of topics has to be a trade-off be-
tween adaptation capacity and the difficulty of assignment. The assignment
itself is very hard to achieve for a larger set of documents when done man-
ually. A number of automated topic-assignment approaches exists, but – as
usual – they introduce error. For this reason many approaches refer to large
corpora which are already topically assigned (this also replies to the first task).
Such corpora exist now for English (e.g. the Switchboard corpus3), but they are
(still) hard to find for other languages.

The third task is also not trivial, moreover it has to be performed on-line
(i.e. during recognition or prediction). The current topic has to be identified
from the context, and, since the topic can change, this procedure has to be
updated regularly. A standard approach for topic identification is a tfidf classi-
fier (cf. Seymore & Rosenfeld, 1997); here each topic is represented as a high-
dimensional vector. The similarity between a topic and the current context is
then determined by building a vector of tfidf values from the word (tf ) and
document frequencies (df ) of the context and by calculating the distance be-
tween these two vectors. The most similar topic is then considered the topic of
the context. Some approaches also use the k nearest topics to describe the cur-
rent topic of a document (cf. Mahajan et al., 1999). For an overview of different
topic identification methods see the works of Bigi et al. (2001b,a).

Two works apply topic modeling for word prediction: While the work of
Lesher & Rinkus (2001) focuses more on studying the theoretical benefit that
can be achieved by topic models, the approach of Trnka et al. (2006) comprises
a full model including identification and adaptation. Both works make use
of the just mentioned Switchboard corpus, in which each document (telephone
conversations) is assigned to one of 70 topics4.

Trnka et al. (2006) present two methods to integrate topic information. For
the first method (A) they compute a separate language model (bigram) for
each of the 70 topics. The combined probability is then calculated as follows:

3http://www.ldc.upenn.edu/Catalog/readme files/switchboard.readme.html
4Lesher & Rinkus (2001) constrain their study to the 20 most frequently occurring topics.
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P (w|h) =
∑
t∈T

P (t|h) · P (w|t, h) (5.4)

where t is one of the topics in the topic set T , and P (w|t, h) is the probability
assigned by the language model to t. The topic probability P (t|h), serving as
an interpolation coefficient, is calculated from the similarity value (cosine) of
the given context h with t. In this way, each topic model contributes to the
overall probability according to its similarity with the context. This means
that the difficult problem of topic identification for a given context is reduced
to a mere similarity problem; a given context is not forced to belong to one
topic, the probability estimates result from a similarity-weighted combination
of all topics.

The second method (B) presented by Trnka et al. (2006) uses topic-
dependent unigram probabilities, which are again derived from the Switch-
board corpus. These topic probabilities are then combined by multiplying them
with the base model (also referred to as geometric interpolation, cf. section
5.4.3):

P (wi|h) = ν · Pbase(wi|h) · Pt(wi)α (5.5)

where ν is a normalization factor, Pt(w) is the probability estimate of wi
belonging to topic t, and α is a tuning parameter. For optimization reasons
however they omit the normalization.

5.3 Semantic adaptation with Latent Semantic Analysis

Each of the methods incorporating semantic information presented so far in-
cluded some model-specific difficulties, making them suboptimal or inappro-
priate to apply for our purposes. The structural as well as the topic-oriented
approaches rely on resources which are hard to obtain for languages other
than English; the trigger model integrates semantic information only at a very
local, context-independent level. Moreover, none of the approaches showed
convincing and reliable gains for prediction performance. For these reasons,
we want to present and employ in the following a rather different paradigm,
which has shown remarkable success in a wide-spread range of tasks and
problems: Latent Semantic Analysis (LSA).

5.3.1 Latent Semantic Analysis in NLP

Since the early 1990s, LSA has become a well-known technique in NLP and
neighboring areas. When it was first presented by Deerwester et al. (1990), it
aimed mainly at improving the vector space model in information retrieval (cf.
Salton & McGill, 1983); for this reason it is also known as Latent Semantic Index-
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ing. Its abilities to enhance retrieval performance are remarkable; results could
be improved by up to 30%, compared to a standard vector space technique (cf.
Dumais, 1995, TREC routing task).

This finding was the headstone for many subsequent researches. More-
over, it was soon recognized that LSA offers a rather universal paradigm to
deal with semantics in NLP but also in psycholinguistics. The central con-
cept of LSA is the vector space, in which every meaning-bearing element is (or
can be) placed. Any two elements (be it words, sentences or full documents)
can then be compared to one another; semantic similarity is represented by
the distance of the corresponding vectors. An easy-to-read introduction to the
geometric perspective of semantics is given by Widdows (2004).

And yet another aspect makes LSA very appealing for real-life NLP tasks:
While structural approaches mostly rely on handcrafted semantic information,
represented in logical formulae or frame-like structures, LSA derives semantic
information from nothing but large amounts of text (i.e. no further manual
knowledge engineering is involved).

Due to these two factors, the geometric perspective on semantics and the
almost effortless construction of a knowledge base, LSA was applied in many
different domains, as diverse as speech recognition, e-learning, and cognitive
modeling. In the following a few examples of these works and their results are
given:

Landauer et al. (1997) present an LSA-based scoring technique of student
essays: They represent each of the essays (on heart anatomy) as a document
vector in an LSA-based vector space. By measuring their distance to sample es-
say vectors (whose essays have already been scored by humans), they assign
a score to each of the essays. The correlation between the LSA-based scores
and those by human experts was 0,77, which was the same as the correlation
between any two human experts. Based on these techniques a number of in-
telligent tutoring systems were developed, e.g. AutoTutor (Wiemer-Hastings
et al., 1999), or SummaryStreet, (Wade-Stein & Kintsch, 2003) for summariza-
tion training.

In (Landauer & Dumais, 1997) a theory of knowledge acquisition and rep-
resentation is presented, assuming that the meaning induction mechanisms
performed by LSA are very similar to those of humans. As an example task,
LSA is applied to solve the TOEFL5 synonym test, and it could be shown that
the results of LSA are the same as those of the average foreign student pass-
ing the TOEFL (LSA: 64,4%; human participants: 64,5%). In (Rapp, 2003), a
slightly different LSA model, trained on much more data, was able to solve
even 92,5% of the synonym questions.

But LSA was also applied in more language-centered domains: Bellegarda
(1997, 2000) as well as Coccaro & Jurafsky (1998) combine LSA information

5Test of English as a Foreign Language
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with statistical language modeling; they report significant reductions in per-
plexity (up to 32% with respect to a bigram baseline). In (McCauley, 2004;
Deng & Khudanpur, 2003) and (Pucher, 2007) LSA-enhanced language mod-
els are applied in several speech recognition tasks, their results were however
not as clear. The major difficulty here seems to lie with the combination of a
language model and information from LSA. This will be subject of section 5.4.

5.3.2 LSA: Method and formal background

The analysis is divided into two major steps, each of which will be explained
in detail below:

1. Construction of a co-occurrence matrix (term×document or term×term)

2. Application of singular value decomposition and reduction of the term ma-
trix to a lower dimensionality

The concept of a co-occurrence matrix has been developed in information
retrieval. It displays the frequency of each term of the vocabulary in each
document of the document set; therefore its size is determined by the number
of terms in the vocabulary and the number of documents. It is obvious that
such a matrix can become extremely large, and it can be assumed that it is very
sparse, since usually only a small number of distinct terms (types) occur in a
given document.6 Still, such a matrix enables to quickly search and compare
documents, only depending on the frequency counts of the terms they contain
(vector space model, cf. Salton & McGill, 1983).

In its original form, as presented in (Deerwester et al., 1990), LSA takes as
input such a matrix, based on frequencies of terms in documents. However,
due to the complex matrix computations that are performed subsequently, the
amount of corpus data is very limited in such a setting. In addition the notion
of document varies strongly over different corpora, no general criteria can be
defined: a document can be only a small text section, a newspaper article, a
telephone conversation or a book, which implies very different lengths and
consistencies. For these reasons Schütze (1998) as well as Widdows (2004) pro-
pose the use of a different kind of matrix: a term×term matrix stores the co-
occurrence frequencies of terms within a predefined context window (similar
to the co-occurrence window discussed in section 5.2.2). The two sets of terms
need not be identical, one can also define a set of index terms I = (i1, . . . , im),
usually consisting of more specific content words. It is clear that such a matrix
is much denser than a matrix based on documents; moreover its size is inde-
pendent of the size of the training data, therefore much larger corpora can be
used for training.

6In Wandmacher (2005) a term×document-matrix was used that had less than 0,08% non-
zero elements.
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After the matrix is filled with the co-occurrence frequencies, in principle no
further processing is needed in order to compare terms to one another; each
term is represented by a vector (of size |D| or |I|). The distance of these term
vectors can then be calculated by one of the usual vector distance measures
(e.g. Euclidean distance, city-block metric, scalar product etc.7). Most works
on LSA however apply the cosine measure (cf. for example Deerwester et al.,
1990; Landauer & Dumais, 1997; Coccaro & Jurafsky, 1998; Schütze, 1998). The
cosine of the angle between any two vectors ~wi and ~wj of dimensionality m

with components wik und wjk, k ≤ m is defined as follows:

cos( ~wi, ~wj) =

m∑
k=1

wikwjk√
m∑
k=1

w2
ik

m∑
k=1

w2
jk

(5.6)

The cosine has the important advantage that it normalizes for length (by
the denominator); in this way frequency influences are leveled out. In addi-
tion the result becomes standardized ([−1; 1]), which facilitates further com-
parisons.

The comparison of co-occurrence vectors of terms is also referred to as sec-
ond order co-occurrence (cf. Grefenstette, 1994; Rapp, 2002); here, similarity is
not established because two terms occur with one another, but because they oc-
cur with similar terms, they have similar environments. This is an important
difference, because two terms can show a very high second-order similarity,
even though they do not co-occur. Moreover, while a high first-order simi-
larity mostly describes syntagmatic relations, second-order similarity seems
to display more semantic relatedness between terms (cf. Rapp, 2002; Wand-
macher, 2005); this is however only a tendency, apart from the one mentioned
above no clear-cut criteria can be determined.

Second-order similarity, determined on such a raw matrix, can already
yield interesting results. The Hyperspace Analogue to Language (HAL) model
by Lund & Burgess (1996) for example is based on this kind of matrix. How-
ever, since such a matrix is very large, vector comparisons can take a con-
siderable amount of time. Another weakness of this model is that such co-
occurrence frequencies are rather noisy. The proponents of LSA assume that
the important semantic structures are hidden (or ’latent’) behind many arbi-
trary co-occurrences. To reveal these structures the weak relations have to be
eliminated.

To achieve this, Singular Value Decomposition (SVD) is applied to the input
matrix. This procedure is similar to principal component analysis, but, unlike
PCA, it can be performed on any type of matrix (cf. Berry et al., 1999). The

7A good overview on different distance measures and their effects in information retrieval
is given by Salton & McGill (1983).
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main achievement of an SVD is to enhance the contrast between weak and
strong components in a matrix; for this reason SVD is also applied in signal
processing, image compression and numeric meteorology. In this way noisy
elements are filtered out and important connections are strengthened. Fur-
thermore, the matrix size is reduced from several thousand to a few hundred
dimensions, making vector comparisons much quicker. In the following a for-
mal definition of singular value decomposition is given:

LetA be a matrix∈ Rm×n, of rank r8. The singular value decomposition (SVD)
of A is then defined as:

SV D(A) = UΣV T (5.7)

where UTU = V TV = In (Orthogonality condition) and Σ =
diag(σ1, ..., σr), σi > 0 for 1 ≤ i ≤ r, σj = 0 for j ≥ r + 1 and σ1 ≥ σ2 ≥
... ≥ σr ≥ 0.

The matrices Um×r and Vn×r consist of the eigenvectors of the columns (in
U ) and rows (in V ) of A. They are orthogonal, i.e. their vectors are linearly
independent. Σ is a diagonal matrix containing the singular values σi of A in
descending order. The product of these three matrices is again A.

The decisive step now consists of mapping the original matrix into a sub-
space, i.e. a space of lower dimensionality. This is done by eliminating the
r − k + 1 lowest singular values and by remultiplication of the cropped ma-
trix of singular values σk with U and V . The resulting matrix Ak is the best
least squares approximation of A in a k-dimensional space, i.e. the euclidean
distances between all vectors of A were preserved as much as possible. Figure
5.1 gives a schematic overview of an SVD.

A = U

VT×××× ××××

m × n m × r

r × r r × n

k k

k k

Σ

Figure 5.1: Singular value decomposition (SVD) of a matrix A and reduction
to k dimensions

8The rank of a matrix equals the number of its linearly independent columns or the number
of non-zero eigenvalues of AT ×A. Often r is simply min(m,n).
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If only the term vectors are needed (e.g. for determining the semantic re-
latedness of terms), it is not necessary to rebuild the matrix Ak. It is then suf-
ficient to crop the vectors of the row matrix U to k dimensions and use these
k-dimensional vectors for comparison.9

A difficult aspect however is to determine the optimal number of dimen-
sions k to which the matrix will be reduced: If the reduction is too high, the
vectors cannot anymore be properly placed in the resulting space, and impor-
tant relatedness information gets lost. If the reduction is too low, spurious
relations are not sufficiently filtered, the desired contrast enhancement does
not arise. In most works the factor k is heuristically set to 100 – 400 dimen-
sions (cf. Deerwester et al., 1990; Dumais, 1995; Kintsch, 2000). Landauer et al.
(1998) have investigated this question on the TOEFL synonym test (mentioned
above): Their performance curve shows a quick and straight rise from 2 to
100 dimensions; it then oscillates around a peak of 300 and falls slowly after-
wards (cf. Figure 5.2). Interestingly, the percentage of correct answers for the
unreduced model (full dimensionality) was approximately the same as with a
reduction to 2 dimensions.

Introduction to Latent Semantic Analysis 23

To assess the role of dimension reduction, the number of dimensions was varied

from 2 to 1,032 (the largest number for which SVD was computationally feasible.) On log-

linear coordinates, the TOEFL test results showed a very sharp and highly significant peak

(Figure 5). Corrected for guessing by the standard formula ((correct - chance)/(1-

chance)), LSA got 52.7% correct with 300 and 325 dimensions, 13.5% correct with just

two or three dimensions. When there was no dimension reduction at all (equivalent to

choosing correct answers by the correlation of transformed co-occurrence frequencies of

    Figure 5.    The effect of number of dimensions in an LSA corpus-based
representation of meaning on performance on a synonym test (from ETS Test of
English as a Foreign Language). The measure is the proportion of 80 multiple-
choice items after standard correction for guessing. The point for the highest
dimensionality is equivalent to a first-order co-occurrence correlation.

words over encyclopedia passages), just 15.8%. At optimal dimensionality, LSA chose

approximately three times as many right answers as would be obtained by ordinary first-

order correlations over the input, even after a transformation that greatly improves the

Figure 5.2: Performance curve on the TOEFL synonym test with different di-
mensions (2 ≤ k ≤ 30.743) (from: Landauer et al., 1998, p. 23)

These results suggest that the application of the SVD indeed plays an im-
portant role for the uncovering of relations within the matrix. The effects of
the SVD on term (and document) similarity has been studied in the works of
Story (1996) and Wiemer-Hastings (1999) as well as by Kontostathis & Pot-
tenger (2003, 2005). Their overall conclusion is that the SVD-based dimension-
ality reduction indeed contributes in an important (and beneficial) way to the

9When Lanczos-type algorithms (cf. Lanczos, 1950) are used for calculating the SVD, not
more than k dimensions will be calculated anyway. These algorithms represent a very efficient
way to calculate an SVD on large, sparse matrices. An overview on different public-domain
implementations of Lanczos-algorithms can be found in (Berry, 1997).
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quality of the analysis.

The vector space resulting from a dimension-reduced co-occurrence matrix
is often referred to as a semantic space (cf. for example Landauer et al., 1998;
Kintsch, 2000); Schütze (1998) as well as Widdows (2004) prefer the term word
space. Figure 5.3 summarizes the different steps involved in its construction
(here for term×term-matrices).
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Figure 5.3: Schematic overview of an LSA transformation

5.3.3 Excursus: Measuring semantic relatedness

It has become obvious in the previous sections that capturing semantic relat-
edness is crucial for the success of a semantic adaptation method. In the past
years a considerable number of different semantic relatedness measures have
been developed, many of which are based on hand-crafted lexical-semantic
nets like the Princeton WordNet (cf. Fellbaum, 1998). Most of these methods
make use of the path distance that is measured on the hyponym tree of such
a word net, some in combination with frequency information. Typical repre-
sentatives of these measures are the ones proposed by Wu & Palmer (1994), by
Hirst & St-Onge (1998), Lin (1998), Resnik (1995) or by Leacock & Chodorow
(1998). In the following only the Leacock-Chodorow measure will be exemplarily
presented; a more detailed overview of all measures can be found in (Cramer
& Finthammer, 2008).

The Leacock-Chodorow measure is based solely on the structure of the hy-
ponym tree of a lexical-semantic net; it measures the length of the shortest
path (in intervening nodes) between two terms (or their respective synonym
sets) and scales this value by the maximum depth of the complete tree. Equa-
tion 5.8 presents the details of this measure:

SimLC(w1, w2) = − log
2 · sp(w1, w2)

2 ·Dmax
(5.8)

w1 and w2 are any two terms described in the lexical-semantic net,
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sp(w1, w2) is the length of the shortest path between w1 and w2 on the hyponym
structure, and Dmax represents the maximum depth of the net (= length of the
longest hyponym path).

Considering the multitude of these measures the question arises how well
they are able to capture semantic relatedness, and how LSA or other corpus-
based measures (like pointwise mutual information, cf. equation 5.2) perform in
comparison.

In collaboration with Irene Cramer and Marc Finthammer (Universität
Dortmund, Germany)10, we have conducted an extended evaluation of many
relatedness measures, including PMI and LSA.

We created two test sets: Set A comprised 320 manually assembled German
word pairs, out of which 100 were randomly selected. Set B consisted of 500
word pairs, which were automatically compiled from several resources (10%
collocations, 10% associations from a thesaurus, 80% randomized). The pairs
of these test sets were rated by human annotators (German native speakers) on
a 5-level scale with respect to their semantic relatedness (Set A: 35 participants,
Set B: 75 p.). The subjects were asked to base the rating on their intuition about
any kind of conceivable semantic relation between the two terms.

In addition semantic relatedness of each word pair was determined using
each of the following methods: Wu-Palmer, Hirst-St-Onge, Lin, Resnik, Jiang-
Conrath, point-wise mutual information (PMI, cf. equation 5.2), based on hit
counts from Google, as well as LSA (cosine)11. For the application of the tree-
based measures GermaNet (cf. Hamp & Feldweg, 1997), the German version of
WordNet was utilized. After calculating the semantic relatedness for all mea-
sures, the correlation (Pearson) of each of them with the average human ratings
was determined. Table 5.2 shows the correlation coefficients for all measures
applied. All correlations were significant at a level of < 0, 01.

Test Wu & Leacock & Hirst & Google LSA
set Palmer Chodorow Lin St-Onge Resnik PMI cosine
A 0,36 0,48 0,48 0,47 0,44 0,37 0,62
B 0,21 0,17 0,27 0,32 0,24 0,35 0,59

Table 5.2: Correlations (Pearson coeff.) of several semantic relatedness mea-
sures and human estimations

Regarding the results in Table 5.2 we can see that for both test sets the LSA
measure shows the highest correlation with the human ratings. Not only the
net-based measures, but also PMI were outperformed in a significant way.

It is clear that the results reported depend on many factors, for example

10Most of the work reported here is to be attributed to Irene and Marc. More on the objectives
and methods of this evaluation can be found in (Cramer & Finthammer, 2008).

11The semantic space was calculated as described in section 5.5.1
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the net-based measures are strongly dependent on the quality of the lexical-
semantic net applied. We therefore do not want to enter into a deeper discus-
sion about the differences between the measures evaluated or to draw conclu-
sions about their general capacities. It can however be concluded that LSA is
able to determine semantic relatedness, and it seems to perform more human-
like than other measures, which is a crucial precondition for its employment
in a prediction task.

5.3.4 Representing the context in a vector space

In section 5.3.2 it was mentioned that LSA enables to compare any two textual
elements with one another via vector distance measurement in the semantic
space. So far however we have only a vectorial representation of the vocabu-
lary. How can larger units be represented in such a space?

The mostly applied method is to construct a context vector by summing
up the term vectors of all the terms it comprises (i.e. forming the centroid of
these term vectors). This vector will have the same dimensionality as all term
vectors, so that the usual distance measurements can be used:

~hm1 =
m∑
i=1

~wi (5.9)

It is of course an highly simplifying assumption that the semantics of larger
constituents is additive; logical or syntactic constraints like quantification and
negation cannot be represented in such a way.12 However, vector addition
is by far the most common method to represent the meaning of larger con-
stituents in a semantic space (cf. Landauer et al., 1998; Foltz et al., 1998;
Kintsch, 2000), and its application is straightforward and quick. It will there-
fore be applied henceforth in order to build up a context vector.

Let us look at two examples (in Table 5.3) illustrating how illustrate how
LSA based information can contribute to predictive purposes; they were cal-
culated using our own semantic spaces (to be specified in section 5.5.1). Here,
the context vector was built by adding the respective term vectors, and the
nearest neighbors (term vectors) were determined.

Considering the nearest LSA-neighbors for the two examples, it can clearly
be seen that these terms are all semantically related to the respective context.
Moreover, it becomes obvious that the terms with the highest similarity values
(cosine with the context vector) are those that have actually occurred in the
context (cf. ’game’ or ’mathematics’). This is expected; as the context vector con-
tains each of the corresponding term vectors, it will therefore be quite similar
to them. And with regard to prediction this is not an unwanted effect, since, as

12Widdows (2004, ch. 7) however proposes an interesting idea to represent logical constraints
in a vector space by means of quantum logic.
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rank NN cos-val
1. game 0,541
2. kick 0,534
3. offside 0,374
4. pass 0,373
5. tackles 0,276
6. upfield 0,263
7. volley 0,250
8. touchline 0,153
9. referee 0,123
10. pitch 0,115
h = ”The game was nearly

over when the ball”

rank NN cos-val
1. professor 0,352
2. mathematics 0,324
3. dad 0,302
4. taught 0,257
5. mathematician 0,166
6. father 0,159
7. mathematic 0,143
8. grand-father 0,142
9. sciences 0,111
10. teacher 0,097
h = ”My dad was a professor in

mathematics and I think that”

Table 5.3: 10 nearest LSA-neighbors for two example contexts

we have discussed above, self-triggers are usually the best semantic predictors
(cf. again Rosenfeld, 1996).

However, these examples also show the drawbacks of a (purely) LSA-
based prediction model: While it seems that content-related words can in-
deed well be predicted by LSA, the presence of function words as well as local
morpho-syntactic constraints and word order are totally ignored. This means
that we have to combine information from a standard prediction approach
(e.g. a statistical language model) and LSA in order to take advantage of both
models. However, due to the strong variability of the LSA performance on
prediction, this turns out to be a non-trivial problem, as will be seen in the
evaluation part (section 5.5).

5.4 Integrating LSA information with a language model

When we started to work exploiting LSA-based similarities for word predic-
tion, we quickly realized that the application of brute-force methods would
not lead to positive results. We thus developed and implemented a number of
different approaches in order to arrive at a better understanding of the capac-
ities (and incapacities) of the model itself (while of course we do not want to
claim that the optimal solution has been found). The integration approaches
presented in the following are: an LSA-based trigger model, a n-best reranking
approach, and also different kinds of interpolation.

While these approaches are inherently rather different, they all operate on
the model level (cf. section 4.2). Béchet et al. (2004) present an LSA-based data
augmentation method which aims at augmenting frequency counts, based on
semantic similarity with the current context. However, as explained in the sec-
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tion on MAP adaptation (4.2.1), this kind of approach requires that the raw
counts be stored and all probability calculations (including smoothing and
truncation) be performed on-line. In order not to further increase the com-
putational load of our model, we did not try out this kind of method nor did
we test MDI techniques (cf. section 4.2.2). Such approaches should however
be subject to further investigation.

5.4.1 LSA-based triggers

As presented in section 5.2.2, the trigger model incorporates a set of seman-
tically related trigger-target pairs; as soon as a triggering word is seen in the
context, the occurrence probability of the respective target word is raised. The
classical trigger models (cf. Brown et al., 1992; Rosenfeld, 1996) make use of a
first-order co-occurrence measure like pointwise mutual information to calcu-
late the association strength, but, due to the easy comparison of any two term
vectors in an LSA-based space, this idea can be transferred without any further
effort: For a given trigger word a set of targets is calculated by determining the
nearest LSA neighbors having a similarity value of more than a given thresh-
old θ (θ usually = 0, 2 − 0, 4). Using these pairs the base model can then be
adapted according to the schema given in 5.3.

Since the trigger model is based on the cache model, it is reasonable to
weight the influence of the target according to the distance of the trigger and
the word to be predicted: If the recurrence probability of a word wi depends
on its position in the cache, it can be assumed that the words triggered by wi
also depend on it. The schema presented in equation 5.3 can then easily be
adapted by defining the trigger parameter q(b|a) as follows:

q(b|a) =

{
β · SimLSA(a, b) · Cf(da) if SimLSA(a, b) > θ

0 otherwise
(5.10)

The LSA similarity is calculated from the cosine of the corresponding term
vectors ~a and ~b, with negative cosine values being set to 0. β is a constant
scaling factor controlling the influence of the trigger component. The cache
factor Cf(da) is calculated as explained in section 4.3.1; the decay function is
repeated here for convenience:

Cf(da) =

{
ν · d

α
a
µα if da ≤ µ

ν · eγ·da + δ if da > µ
(5.11)

with da being the distance of the trigger word a to the current position
in the text and α, γ, δ and µ being constants scaling the optimal recurrence
function.

While the trigger model is probably the most straightforward idea to incor-
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porate LSA information for prediction, it only makes use of term-term similar-
ities; the particular property of LSA, making similarity measurements between
terms and contexts possible, is not exploited. This however is performed by
the following methods.

5.4.2 Partial reranking

In section 5.3.4 it was argued that while LSA can serve as a predictor for con-
tent words being semantically related to the context, it is unable to predict
function words, and it is also insensitive to the frequency of word usage. The
underlying idea of partial reranking is therefore to constrain the effect of the
LSA prediction by considering only the best m candidates (i.e. the terms with
the m highest probabilities) from the base model for LSA: The m best terms
are reranked according to their LSA similarity with the current context. In
this way the model is prevented from making totally implausible predictions,
and the probability of function words (which are not represented in the vector
space) is preserved.

The method can be formalized as follows: For a given context h we calcu-
late from our base model the ordered set Bestm(h) =< w1, . . . , wm >, so that
P (w1|h) ≥ P (w2|h) ≥ . . . ≥ P (wm|h). We then calculate for each member in
Bestm(h) its reranking probability PRR by determining its LSA similarity with
the context:

PRR(wi|h) =

{
ν · β · Pbase(wi|h) · SimLSA(wi, h) if wi ∈ Bestm(h)
ν · Pbase(wi|h) otherwise

(5.12)

where SimLSA(wi, h) determines the cosine similarity of ~wi and the context
vector ~h.13 β is again a scaling constant controlling the influence of the LSA
component, and ν represents a normalizing factor to assure that all values sum
up to 1. Optimal values for m obviously depend on the overall size of the
vocabulary; it can be assumed that a value of 5 to 10% of the total vocabulary
represents a reasonable size.

5.4.3 Linear and geometric interpolation

Interpolation is a very important tool for integrating information from dif-
ferent resources; many models presented in the last chapters rely on it. In a
probabilistic framework however, interpolation requires that the resources to
be combined provide probability-like estimates. While our base model fulfills
this requirement, we have to transform the LSA estimates.

13As for the trigger model, SimLSA crops negative cosine values at 0 to avoid negative
probabilities.
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This can be achieved in a straight-forward manner by standardizing and
normalizing the cosine similarities between each word vector ~wi and the vector
of the current context ~hi so that the estimates for all words again sum up to 1.
This pseudo-probabilistic distribution is however rather flat; its dynamic range
is very low. For this reason a contrasting (or temperature) factor γ is normally
applied which raises the cosine value to some power (normally γ = 3 − 8)
and thereby stretches the distribution. The probability-like LSA estimate for a
word wi given a context h is then calculated as:

PLSA(wi|h) =

[
(cos(~wi,~h)− cosmin(~h)

]γ
v∑
k=1

[
cos(~wk,~h)− cosmin(~h)

]γ (5.13)

where cosmin(~h) returns the lowest cosine measured for h; it is needed to
make all values non-negative.

Pseudo-probabilities calculated in this way can then be interpolated with
estimates from a base model. However, as mentioned above, the estimates
for the two models are very heterogeneous; the LSA model neglects the pres-
ence of function words, and it often overestimates very rare words. A linear
combination therefore tends to level out the single models, which means that
the deficiencies of the LSA estimation are partly transferred to the combined
model. For example, when we consider the trigrams ”the student sleeps” and
”the student university”, due to the strong semantic relatedness between ’stu-
dent’ and ’university’ a linear combination with an LSA model would lower
the probability of the first and raise the probability of the second, which is
however ungrammatical.

To reduce this unwanted effect, Coccaro & Jurafsky (1998) propose to per-
form the integration by means of geometric interpolation (cf. also Klakow, 1998).
While linear interpolation simply adds the (weighted) probabilities, geomet-
ric interpolation multiplies them, weighting is performed by an exponential
coefficient:

PGI(wi|h) =
Pa(wi|h)λa · Pb(wi|h)λb
v∑
k=1

Pa(wk|h)λa · Pb(wk|h)λb
(5.14)

Because the sum of all geometrically combined estimates deviates from 1,
the values have to be renormalized (in the denominator), which is compu-
tationally more demanding. However, the agreement of the single models is
taken into account; the combined estimate is only high if the singular estimates
have similar values.
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5.4.4 Confidence weighting

In the interpolation variants presented so far, the coefficients controlling the
influence of each component were kept static at a given point of time. This
is however not a necessary condition of the model; the coefficients can be
adapted according to the expected success of each model for each word (re-
quiring of course a renormalization afterwards).

It was already mentioned that the prediction capacities of LSA depend
strongly on the semantic properties of a term. While it does well at predict-
ing specific content words, it is unable to predict more general terms, having a
rather uniform distribution over a context14. For this reason is is reasonable to
modify the interpolation parameters with respect to the term under consider-
ation; yet how can the predictive success of the LSA component be estimated?

Coccaro & Jurafsky (1998) propose the use of entropy as a confidence mea-
sure, which is also often applied as a term weighting scheme in information
retrieval. It can indeed be argued that low-entropy words are more specific
than words occurring in many different contexts.

However, as shown in (Wandmacher, 2005), entropy does not correlate sig-
nificantly with the relation quality of a word in an LSA space; other measures
of specificity like the (already mentioned) tfidf measure do not correlate very
strongly (r = 0, 32). A higher correlation however was found for the mean
distance of the nearest LSA neighbors of a word, i.e. the density of a word
cluster (r = 0, 56). For this reason we here propose a density-based confidence
measure. We define the cluster density Dm for a term wi with respect to its m
nearest neighbors as follows:

Dm(wi) =
1
m

m∑
j=1

SimLSA(wi, NN i
j) (5.15)

where NN i
j represents the j’th nearest neighbor to word wi and SimLSA

again reflects the (standardized) cosine between the vectors of wi and NN i
j .

An example motivating the idea behind this confidence measure is given in
Figure 5.4.

A rather specific term like ’plane’ has strongly related nearest neighbors
(like ’jet’ or ’flight’), the average distance is rather high (0,57). The nearest
neighbors of a more unspecific term like ’introduce’ however are less related,
the density of its 10-word cluster is lower (0,26).

While cluster density can serve as an estimate for the prediction quality of
the LSA component, it still has to be scaled in order to serve as a coefficient
for interpolation, otherwise the influence of the LSA component can get too
large (e.g. for our vocabulary Dmax was 0,95). By empirical testing we found

14Coccaro & Jurafsky (1998) call them promiscuous words
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plane introduce

pilot

aircraft

airport

jet

fly
flight

flying

passengers

airline

aviation

measures

proposal

existing

abolished

laws

plansallow

proposed

abolish

legislation

D10(plane) = 0,57 D10(introduce) = 0,26
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Figure 5.4: Examples of terms having high (’plane’) and low (’introduce’) cluster
density and their 10 nearest LSA neighbors

reasonable sizes for the scaling factor β of 0,2 – 0,4. All function words which
are not represented in the LSA space will receive a default value of β = 0, so
that they are estimated by the base model only.

5.5 Evaluation: Method and results

For the evaluation of the semantic adaptation component we make use of basi-
cally the same evaluation method as for the user adaptation models (cf. section
4.4). We first introduce the training and test data and then take a closer look
at some of the parameters that have to be optimized in order to construct an
optimally performing LSA model. We then compare exhaustively all of the
integration methods that were just presented and finally discuss the overall
results.

5.5.1 Training and test corpora

It was already mentioned that LSA requires large training corpora in order to
reliably estimate its co-occurrence statistics. And as discussed in the previous
chapter (4.4), an easy and reliable way to acquire large amounts of general
language text is to use newspaper corpora, which – despite their well-known
deficiencies – provide sufficiently general and modern language samples, cov-
ering a multitude of different semantic contexts. For reasons of quality and
missing control we were again reluctant to use web-based corpora.

The resources that we use for training are from the same origins as the
data described in section 4.4, however we used significantly larger amounts of
text (more than 100 million token per language). The vocabulary is limited to
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80.000 words for all models; words having a corpus frequency of less than 20 as
well as closed-class (function) words, bearing only little semantic information,
are excluded. Table 5.4 gives an overview of the different corpora used for
training:

Origin (years) Nb. of token Vocab. size
French Le Monde (1996-1999) ∼100 ×106 80.000

German Die Tageszeitung (1997-1999) ∼101 ×106 80.000
English The Guardian (1997-1998), ∼108 ×106 80.000

The Times (1993, 1995)

Table 5.4: Training corpora and sizes used for the construction of the co-
occurrence matrix

For further processing we employed the Infomap toolkit15. Using this
toolkit we could calculate co-occurrence matrices on our given training cor-
pora, and we could also reduce them by singular value decomposition, based
on a Lanczos algorithm (cf. Berry et al., 1999).

Concerning evaluation we again followed the cross-register paradigm, as
explained in the previous chapter (section 4.4), in order to get a realistic pic-
ture of the performance of our models. And to assure comparability with the
results presented in the previous chapter, we used the same test corpora as
before: text from newspaper (news), literature (19th century novels; lit), tran-
scribed speech (dedicated dialogue; speech), and personal e-mail correspon-
dence (e-mail); these corpora were described in more detail in the previous
chapter (Table 4.4.3). For purposes of parameter optimization however we
only used the newspaper test corpora (news).

In order to have a common reference point to compare our results to, we
also made use of the same baseline (4-gram model, trained on newspaper data)
as before. It has been described in section 4.5.

5.5.2 Parameter setting

The parameter space of an LSA-based model is quite large; there are at least
a dozen of parameters influencing the performance (e.g. corpus size, matrix
size, similarity measure etc.). Since a profound examination of each of them
would surely merit a thesis of its own, we had to rely on results from other
works and on our own experience with LSA-based models. We did however
take a closer look at three of the most important parameters: the size of the
co-occurrence window, the degree of dimensionality reduction, as well as the
amount of context to take into account.

15Version 0.8.6, cf. http://infomap-nlp.sourceforge.net. Many thanks to the authors for mak-
ing their tool available!
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Co-occurrence window

The size of the co-occurrence window is a crucial factor for establishing se-
mantic relatedness, since it exerts a direct influence on the input matrix. Previ-
ous works employed rather small, roughly sentence-length windows around
the target word; Lund & Burgess (1996) used windows of ±8, Cederberg &
Widdows (2003) used ±15 words. Such values however seemed to perform
sub-optimally in our case. We therefore calculated spaces for varying window
sizes from±10 to±120 words. To better investigate small effects, we excluded
closed-class words from the ksr calculation (such words were however still
present in the context), which obviously stretches the ksr advantages. As in-
tegration method (static) geometric interpolation (λLSA = 0, 08) was applied.
Figure 5.5 shows the ksr5 results for different sizes of co-occurrence windows;
the test was performed on the English newspaper corpus (news-en).
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Figure 5.5: Results (ksr5) for different co-occurrence windows (±10 - ±120);
tested on news-en

The trend of the curve in Figure 5.5 is quite clear: The performance gain
grows with the context size, but it seems to reach a level at ±100 words16.

Interestingly, this result is in accordance with results that we obtained on a
very different task: In (Wandmacher et al., 2008) we applied LSA for predicting
human associations. Here as well we could see that the largest co-occurrence
windows performed best.17

16Due to computational constraints we were not able to compute models for window sizes
larger than ±120 words.

17Since we used in this work a higher dimensionality, we were not able to extend the co-
occurrence window over more than ±75 words.
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Dimensionality

The other important factor in the construction of a semantic space is the SVD-
based dimensionality reduction; as already mentioned in section 5.3.2, the re-
duction is beneficial for the geometric representation of the vectors, since it
eliminates spurious influences, it can however also harm if too many dimen-
sions are removed. In the case of word prediction another factor comes into
play: the processing time of vector comparisons grows linearly with the num-
ber of dimensions. We therefore have to trade off prediction success against
processing time.

Figure 5.6 shows the performance as well as the time curve (runtime per
prediction)18 for dimensionalities from 10 to 30019; the evaluation was per-
formed on news-en, the LSA model was integrated by geometric interpolation
(λLSA = 0, 08).
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Figure 5.6: Results (ksr5 and runtime per prediction) for different dimension-
alities k (k = 10− 300); tested on news-en

The performance curve (ksr5) in Figure 5.6 basically follows the first part of
the (logarithmized) curve in Figure 5.2: The performance grows rapidly in the
beginning and then flattens, but we cannot observe a peak before 300 dimen-
sions. The processing time however grows linearly from 107 (10 dimensions)
to 306 milliseconds per prediction at 300 dimensions. A delay of more than
300ms has already a distracting effect on the user, the prediction process is not
anymore perceived as smooth. In this respect a reasonable trade-off would be
a dimensionality of 150 dimensions, saving roughly a third of the processing
time (204ms) while loosing only minimally in keystroke savings.

18The tests were performed on an Intel Dual Core processor with 1,83Ghz, 2GB RAM.
19Again, due to computational restrictions, we could not calculate spaces of dimensionalities

higher than k = 300.
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Context size

A last parameter that we have investigated concerns the maximum amount of
context from which the context vector will be built. It can be assumed that if
the context size is too short, long-distance dependencies (at which our model
actually aims) are not considered anymore. If the size is set too large, seman-
tically irrelevant terms may be included; moreover, the influence of each term
decreases with a growing size. In order to find a near-optimal value, we tested
on context sizes from 1 to 120 content words. This time however the perfor-
mance (in terms of ksr5) was measured on all words in the test corpus (news-
en), since it can be assumed that this parameter also effects closed-class words.
Figure 5.7 shows the performance curve with varying context size (the inte-
gration was performed using CWGI).
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Figure 5.7: Results (ksr5) for different context sizes (|h| = 1 − 120); tested on
news-en

The curve appears to be quite smooth: It quickly rises up to a size of 50
words and then remains rather flat, reaching its maximum at a context size of
100 words. Interestingly however we measured a degradation in performance
for a size of 1 content word only. This can probably be explained by an over-
estimation of the combined model. Local semantic dependencies are already
well estimated by our base model. The information provided by an LSA model
which also captures local dependencies only then has a deteriorating effect.

To conclude this section: The LSA models applied henceforth are reduced
to 150 dimensions, and they are calculated on a co-occurrence matrix using
a window of ±100 words. A maximum context of approximately 100 words
seems to yield stable results, therefore we set the context size in the following
to this value.
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5.5.3 Integration methods

In section 5.4 we discussed the difficulties that arise when LSA is used for
prediction, and we presented a number of different methods how informa-
tion coming from an LSA model can be integrated with a classical n-gram ap-
proach. Here the performance of all of these methods is evaluated. Again, a
considerable number of parameters had to be optimized; this (rather tedious)
work was performed on held-out test data and will not be reported in detail
here, however all parameters specified below were optimal with respect to
our test corpora. The following 6 methods were applied with the parameters
as specified:

1. LSA-trigger: LSA-based trigger model, as explained in section 5.4.1. Pa-
rameters: Cache size = 1000; threshold θ = 0,4; scaling factor β = 0,0001.

2. Rerank: Partial reranking, as presented in section 5.4.2. Parameters:
Number of reranked items m: 1000; scaling factor β = 0,001.

3. SLI: Static linear interpolation; Contrasting factor γ = 4; Coefficient λLSA
= 0,096 (Set by EM algorithm)

4. SGI: Static geometric interpolation; Contrasting factor γ = 4; Coefficient
λLSA = 0,073 (Set by EM algorithm)

5. CWLI: Confidence-weighted linear interpolation; Contrasting factor γ =
4; Coefficients λLSA dynamically set according to the density-based con-
fidence measure (D100, cf. section 5.4.4). β = 0, 4.

6. CWGI: Confidence-weighted geometric interpolation; Contrasting factor
γ = 4; Coefficients λLSA dynamically set according to the density-based
confidence measure (D100, cf. section 5.4.4). β = 0, 4.

These methods were evaluated on the three newspaper corpora (news),
ksr5 was determined on all words (i.e. closed-class words included). The
LSA spaces applied (one per language) were trained on the corpora mentioned
above (cf. 5.4), based on a 80.000×3.000 term-term matrix and a co-occurrence
window of ±100 words. The matrices have been reduced by SVD to 150 di-
mensions each.

Table 5.5 gives an overview on the results for all methods tested as well as
for the 4-gram baseline and the cache model, as presented in section 4.5 (Tables
4.4 and 4.9).

Considering the results in Table 5.5 three observations can be made: First,
the results for the trigger approach, partial reranking and for static linear inter-
polation are very close, their ksr advantages range from +0,61 to +0,85, which
is only slightly superior to the standard cache model (+0,42 – +0,62). Taking
into account their rather different functioning, this is an unexpected result.
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Method news-fr news-de news-en
Baseline 57,78 51,56 55,49
Cache 58,20% (+0,42) 52,18% (+0,62) 56,03% (+0,54)
LSA-trigger 58,42% (+0,61) 52,21% (+0,65) 56,25% (+0,76)
Rerank 58,53% (+0,72) 52,26% (+0,70) 56,31% (+0,82)
SLI 58,49% (+0,68) 52,22% (+0,66) 56,34% (+0,85)
CWLI 58,30% (+0,49) 52,16% (+0,60) 56,21% (+0,72)
SGI 58,61% (+0,80) 52,32% (+0,76) 56,59% (+1,10)
CWGI 58,92% (+1,14) 52,59% (+1,03) 56,77% (+1,28)

Table 5.5: Results (ksr5) for all integration methods tested

Second, geometric interpolation, particularly when it uses confidence weight-
ing, performs significantly better than the other methods, here advantages of
more than +1% can be measured.

Third, as a surprising matter of fact, the worst performing method is
confidence-weighted linear interpolation, performing hardly better than the
standard cache. This result is in clear contrast to static LI as well as to CWGI.
It can probably be explained by the the already discussed property of linear
interpolation, which does not take into account whether two models agree
or not. The confidence-weighting scheme gives high LSA weight to rather
specific terms, disregarding their appropriateness in the given context. When
these terms then show a high semantic similarity with the context, they are
overestimated by the model, local morpho-syntactic constraints are ignored20.
CWGI is able to deal with this unwanted effect, therefore we find the best re-
sults here.

While it has been shown that confidence weighting in combination with
geometric interpolation is the best performing integration method, the confi-
dence metric itself has not yet been evaluated. Coccaro & Jurafsky (1998) have
presented an entropy-based metric, but, drawing on previous results, we have
argued that a confidence metric based on cluster density might be more appro-
priate. To find out whether or not this is the case we have compared the two
confidence metrics to one another. Table 5.6 shows the results (ksr5) for the
entropy- as well as the density-based metric, using geometric interpolation;
all parameters and methods remained unchanged.

It seems that the density metric has slight advantages over the entropy-
based measure. We do not want to argue that the differences are significant,
however the density measure scores better for all three corpora. It would now
be interesting to try out other measures of specificity as well as combinations
of these; moreover, one could also imagine to incorporate part-of-speech infor-
mation here.

20Remember the example of the student sleeps vs. the student university
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Confidence metric news-fr news-de news-en
Entropy 58,83% (+1,05) 52,42% (+0,86) 56,60% (+1,11)
Density (D100) 58,92% (+1,14) 52,59% (+1,03) 56,77% (+1,28)

Table 5.6: Results (ksr5) for the entropy- and the density-based confidence
measures; test performed using geometric interpolation

5.5.4 Cross-register evaluation

The previous two sections have shown that the optimization of certain param-
eters as well as the way of integration is crucial for the success of a model
taking semantic information into account. However the optimization of our
model was performed on intra-register data only. In order to get an impression
of the real-life performance, it has to be tested on corpora from other registers
as well.

In Table 5.7 we show the keystroke savings (ksr5) for all test corpora from
4 different registers and 3 languages (test on all words). As above, the optimal
LSA models that we have finally applied have been trained on the corpora
specified in 5.4, use a 80.000×3.000 term-term matrix, based on a co-occurrence
window of ±100 words, and are reduced to 150 dimensions. The integration
of the LSA information was performed by CWGI.

French German English
Newspaper 58,9% (+1,1) 52,6% (+1,0) 56,8% (+1,3)
Literature 47,7% (+1,7) 46,1% (+1,2) 51,0% (+1,2)

Speech 49,9% (+1,6) 50,4% (+1,3) 50,1% (+1,6)
E-mail 50,2% (+1,6) 49,1% (+1,1) 50,7% (+1,3)

Table 5.7: Results (ksr5) of the LSA-based model (CWGI) and advantages over
the baseline for all test corpora

As the numbers in Table 5.7 show, the gains of the LSA-enhanced model are
quite stable. Over all languages and registers we find advantages (with respect
to the 4-gram baseline) of +1,0% to +1,7%; in a paired t-test all gains turned out
to be highly significant (sig. level ¡ 0,001 at a 99% conf. interval). Important dif-
ferences between the three languages however cannot be determined, and in
the inter-register comparison the speech corpora seem to obtain slightly better
results than the other registers (for the German and English corpora). This is
probably due to the type of dialogues (tourist information/business appoint-
ments), making the text semantically quite distinct. But also another factor
plays a role here: As shown before, the LSA model gives higher weight to self-
triggers (i.e. words that have occurred before), it therefore has a similar effect
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as the cache model. And, as could be seen in the previous chapter (cf. sec-
tion 4.5, Table 4.5.2), the speech corpora were particularly sensitive to cache
information, since they use a highly constrained and repetitive vocabulary.

In general it has to be stated that the gains achieved by our semantic model
do not seem overwhelming, especially when compared to the user-oriented
models in the previous chapter. Still, it can be noticed that these results range
– to our knowledge – among the highest gains for an approach exploiting se-
mantic information for word prediction (cf. section 5.5.5).

In addition, the 4-gram baseline to which we compare our model already
performs rather well, and – as discussed in chapter 2 – at a baseline of more
than 55% it seems increasingly difficult to achieve additional keystroke sav-
ings. Moreover, it has not yet been investigated to what extent semantic infor-
mation can theoretically contribute to prediction. In this light it is impossible
to estimate how much of this information has been exploited by our approach.

Another aspect that could not be evaluated by the quantitative measures
applied here is the qualitative effect of such a model: An AAC system cannot
only help speeding up text insertion, it can also provide cognitive support
for its user, whose communicative abilities might be totally depending on it.
Therefore, she or he might feel a strong improvement using a word predictor
that is able to propose semantically related terms, even though the actual gain
in terms of keystroke savings might be modest. This effect is however quite
hard to investigate; only long-term work with several users can reveal to what
extent they feel supported by such a predictor.

5.5.5 Comparison with related work

In section 5.2 a number of approaches were presented that aimed at exploiting
semantic information for word prediction. This section aims now to give an
overview on the results achieved with these approaches, as reported by the
respective works. As mentioned before, it is futile to directly compare these
results, since they were obtained under highly varying conditions.

In particular we presented structural approaches, trigger and topic-
oriented models. For the structural models however detailed quantitative
evaluations were not published (cf. Guenthner et al., 1992; McCoy & Demasco,
1995), or an enhancement in terms of keystroke savings could not be found
(Hunnicutt, 1989).

Concerning the trigger approach we find an evaluation in (Matiasek & Ba-
roni, 2003). Here, a base model consisting of a word bigram and a PoS trigram
model was combined with long-distance co-occurrences (±50 words), calcu-
lated using pointwise mutal information (PMI, cf. section 5.2.2). The evaluation
was performed on a journalistic test corpus; the base model achieved a ksr5
of 41,475%, the combined model arrived at 41,653%, which represents a ksr
advantage of 0,178. Although the authors showed that this gain is significant
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(applying a two-sided Wilcoxon signed rank test), it is surprisingly low, com-
pared even to our results with the cache model (cf. section 4.3.1).

Word triggers, based on PMI, are also used by Li & Hirst (2005). They ap-
ply however a second processing step: the trigger pairs are filtered according
to their semantic relatedness, calculated from WordNet glosses. The results re-
ported by Li & Hirst (2005) seem at first very promising (+6%), however they
define ksr in a very different manner (distinguishing several word classes),
they do not mention the size of their prediction list and they test on one small
corpus only (3700 nouns); it is therefore difficult to interpret their results.21

A topic model was presented and evaluated by Trnka et al. (2006). Here,
keystroke savings were calculated for integration methods A and B (cf. section
5.2.3); the test data were taken from the Switchboard corpus (221 conversations).
Using a prediction list of 5 words, both methods achieved the same advantage
over a trigram baseline of +0,2%. Interestingly however, method A achieved
larger gains with a growing list size, whereas the advantages of method B were
constant.

Table 5.8 summarizes the results achieved by the works mentioned above.

Reference Prediction method Language ksr5

Bigram + PoS-Trigram German 41,475%
(Matiasek & Baroni, 2003) Bigram + PoS-Trigram +

triggers (PMI)
41,653%

Bigram + PoS-Trigram English 59%
(Li & Hirst, 2005) Bigram + PoS-Trigram +

filtered triggers (PMI)
65%22

(Trnka et al., 2006) Trigram English 57,7%
Trigram + topic model 57,9%

Table 5.8: Keystroke savings (ksr5) reported by different works using semantic
adaptation

5.6 Conclusion

The principal objective of this chapter was to discuss in what way semantic
information can be exploited in order to improve the prediction of words. We
presented a range of approaches, from structural paradigms, over methods
using trigger and topical information to Latent Semantic Analysis, a vecto-
rial approach based on distributional properties of words, which already has

21We tried to contact the authors. Graeme Hirst replied very kindly but could not provide
comparable ksr results, since he lost contact with Jianhua Li, a former Master student of his.

22As stated above, Li & Hirst (2005) define ksr differently (based on distinct word classes);
moreover the size of the prediction list is not mentioned.
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shown convincing performance in determining semantic relatedness. As this
method allows for the geometric representation of any kind of linguistic unit,
it makes similarity measurements between words and contexts possible. It is
however not straightforward how the semantic information provided by LSA
can optimally be integrated with local syntactic information coming from a
classical language model. We therefore presented several integration meth-
ods: an LSA-based trigger approach, partial reranking, and different forms of
interpolation. We also proposed a new kind of confidence metric for estimat-
ing LSA performance, based on cluster density; it is very easy to compute and
correlates better with the quality of LSA relations around a term vector than
an entropy-based metric.

Due to their inherent complexity and the data required, not all presented
approaches could be implemented and evaluated here. We still performed an
extended quantitative evaluation on the LSA model itself (including a number
of important parameters) and on the different integration methods presented.

The best performing LSA model (in terms of keystroke savings) used a co-
occurrence window of ±100 words and its input matrix was reduced to 300
dimensions; this model however had an already critical runtime. We there-
fore opted for using a 150-dimensional model, performing 30% faster despite
a slight performance loss. As for the integration method we found a clear ad-
vantage for geometric interpolation, dynamically weighted by the proposed
density-based confidence metric.

Considering the results in a cross-register evaluation, we observed over
all registers rather stable ksr advantages for the LSA based model of +1,0%
to +1,7%; clear language-specific differences could not be determined. These
gains do not seem very high, compared to the success of the user-oriented
approaches in the previous chapter; yet it has to be acknowledged that they
already represent a significant improvement with respect to other approaches
(e.g. trigger or topic models). Moreover, while we have investigated several
influential parameters in detail, we do not want to claim that we have ap-
plied the optimal model here; the field of distributional semantics is still rather
young, and more work has to be done in order to better understand the capac-
ities of corpus-based co-occurrence models such as LSA as well as the relation
between the distributional properties of words and their semantics.



Chapter 6

SIBYLLE - an adaptive AAC
system

Beginning with the generation first
Of mortal men down to the very last

I’ll prophesy each thing: what erst has been,
And what is now, and what shall yet befall

The world through the impiety of men.

THE SIBYLLINE ORACLES1

(Transl. by Milton Terry, 1899)

In the following we describe the latest version of SIBYLLE, the AAC system that
incorporates the adaptive word predictor, presented in the previous chapters.
We first introduce the user interface, the dynamic key selection (SibyLetter) and
the word predictor (SibyWord), as it has been integrated to the system (6.1). In
section 6.2, some implementation issues and design decisions are disclosed,
and in part 6.3 we present and discuss results of a quantitative evaluation of
the AAC components, in particular the key selection procedures and the word
predictor. In the last section (6.4) we report findings from the application of
SIBYLLE in a rehabilitation center, where the system has been in use since 2001.

6.1 Components

Among the AAC systems introduced in chapter 2 we have already presented
a former version of the SIBYLLE system (cf. 2.4). We have also mentioned that

1As the translator notes, these texts should more properly titled ’the Pseudo-Sibylline Or-
acles’. The original Sibylline Books were oracular scrolls written by prophetic priestesses (the
Sibylls) in the Etruscan and early Roman Era as far back as the 6th century B.C., but these books
were destroyed. The texts of which the first lines are presented here have been composed be-
tween the 2nd and the 6th century A.D.
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it has been developed from 2001 onwards in the context of the PhD project of
Igor Schadle at the Université Bretagne-Sud (cf. Schadle, 2003). At that time it
already comprised the main components: a user interface, a letter predictor for
dynamic keyboard rearrangement (SibyLettre) and a word predictor (SibyMot).

It is difficult to enumerate every detail that has been modified since, it can
however be stated that the major changes concern the word predictor, the dis-
abbreviation facility, the interfacing functionality (with external applications)
as well as the languages included: While the former system was monolingual
(French), we have made the architecture language-independent and added
two more languages: German and English. In the following we will describe
the components mentioned above in their present state of development.

6.1.1 User interface

To get an idea of the overall functionality of SIBYLLE, let us first regard its user
interface. Figure 6.1 shows its latest version (v. 3.7)2. The virtual keyboard
combines a set of sub-keypads offering to insert letters, numbers, words and
also predefined sentences for emergency uses. Jump keys provide fast moves
between these sub-keypads: they are usually the first keys on each keypad.
The different keypads of the interface are displayed in Figure 6.1 and they will
be detailed in the following:

1. Letter keypad: it comprises all alphabetic keys and is used to compose
messages, character after character. When the user activates the letter
prediction component of SIBYLLE (s. section 6.1.2) with linear scanning,
the keys are dynamically rearranged in order to present the most prob-
able letters first. Since punctuation signs and numbers are hardly pre-
dictable, they are displayed in a separate keypad. The current 5×8 lay-
out of the keypad however offers more keys than there are characters;
these keys have been filled with the most frequently used punctuation
signs (the layout can be modified).

2. Prediction list: when the user selects one of these predicted words, it is
automatically inserted into the message. The contents of this list is up-
dated after every change of the given context (left to the current cursor
position). The user can choose between a horizontal and a vertical lay-
out. Results from previous works however suggest that a vertical ar-
rangement of the word list is better accepted than a horizontal one (cf.
Garay-Vitoria & Abascal, 2006).

3. Function keypad: this keypad comprises a number of function keys (like
printing, activating the speech synthesis etc.), jump keys (to reach other

2Some features of the interface were developed by Nicolas Béchet (Université de Tours) and
Zaara Barhoumi (Université Bretagne-Sud) during their research labs. Cf. (Béchet, 2006) and
(Wandmacher et al., 2007).
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Figure 6.1: User interface of SIBYLLE, v. 3.7

keypads) and keys to handle external windows and applications. In
former versions, SIBYLLE only comprised an integrated text editor con-
nected with a text-to-speech synthesizing application. But since users
also want to compose e-mails, use a real word processor or a search en-
gine on the web, we decided to make SIBYLLE more flexible. By interfac-
ing the Microsoft Windows API, our system is now able to enter text in any
kind of text-processing Windows application. Furthermore, configurable
function keys enable direct actions such as Save, New file and Open file.

4. Navigation keypad: this keypad enables the user to move the text cursor
without operating a mouse. It can be used during message composition
(for displacing the caret within the text), but it also enables to select menu
items of external applications.

5. Miscellaneous keypad: this keypad can be used in several modes. One
can use it to select numbers, but also punctuation marks, and finally to
select predefined sentences or messages. This property is very important
for the users, e.g. in emergency situations. Pre-recorded messages can
be individually defined, and they are represented by an icon or by the
beginning of the respective phrase.

When the user is not able to control a mouse, key selection is performed by
scanning: a selection frame successively highlights each key, which can then
be selected. Experiments with our system have shown that users are often dis-
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turbed by the abrupt shifts of the selection frame. When the cursor approaches
the desired key, they have difficulties to temporally prepare their action. As a
result, we observed a significant rate of selection errors. For this reason we
have added a timing line, which glides from the top to the bottom of the frame
(Figure 6.2) and shows the time remaining until the next shift by its position.
This temporal feedback has proven useful to many users.

Figure 6.2: Timing line giving temporal feedback on scanning delays (SIBYLLE,
v. 3.7)

For users who are still able to control the keystroke duration, we have im-
plemented a click timer to which specific functions (such as erasing, capitaliz-
ing or jumping to other windows) can be assigned. This timer distinguishes up
to three durations, and when applied, it can save a lot of additional scanning
steps.

SIBYLLE also includes a module for abbreviation expansion. This compo-
nent enables the user to define his/her own abbreviations that are directly
expanded during the composition of a message (Figure 6.3). If the user pre-
diction facility is activated, abbreviations will automatically be added to the
vocabulary (as soon as they have been used for the first time), so they can be
predicted as well.

Figure 6.3: Mask for entering abbreviation/expansion pairs (SIBYLLE, v. 3.7)

One of the most distinguishing features of SIBYLLE is the high adaptability
of its user interface: In order to best meet the individual requirements of ev-
ery user, we designed all interactive elements as modifiable as possible. This
extends to the whole layout of the interface, for example:
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• Keyboard rendering: Colors, fonts and font size of all keyboards as well as
the keys themselves can be modified and rearranged.

• Selection parameters: Scanning mode, scanning delays, time spans and
long-click functionality (such as direct jumps to other windows or capi-
talizing) are adjustable.

• Interface layout: The size and position of every sub-keypad within the
application window can be set individually.

• Key assignment: Each key can be assigned to different actions, sound
events or background images.

Figure 6.4 shows some of the configuration panels of SIBYLLE.

Figure 6.4: Configuration panels of SIBYLLE, v. 3.7

Adapting colors and fonts may seem a trivial property at first sight. How-
ever in the context of AAC this obtains a different importance, since some
users have varied and complex forms of visual impairment. Here, a very par-
ticular configuration may become necessary. For the same reason the size and
the placement of the keypads can be adapted to the user’s needs. Moreover,
the configuration of each keypad is stored in a text file with a simple, intuitive
format (Figure 6.5 shows an example for the definition of the key ’a’). By edit-
ing these files the rendering, the position as well as the action performed by
each key can be modified.

An optimal configuration of the interface however can of course only be
achieved by close interaction between the user and the medical or caring staff
(cf. also section 6.4).

6.1.2 SibyLetter

As discussed in the chapter on AAC systems (ch. 2), key selection is often
achieved via a line/column scan which significantly reduces the average num-
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(1,5)
Texte=a
Image=letter a.png
Commande=31,a
Special=1

Figure 6.5: Definition of the key ’a’ in the configuration file of the letter keypad

ber of scanning steps needed to reach the intended key. However, this selec-
tion mode requires at least two keystrokes per item selection, and we learned
from user feedback that this kind of selection is rapidly tiring. For this reason
static linear scanning is often preferred, despite its significantly higher average
scanning distance (ASD, cf. section 2.5.1).

In order to speed up communication using the preferred linear scan,
SIBYLLE comprises the possibility to dynamically rearrange the letter keypad
according to the given context. The dynamic reordering is directed by SibyLet-
ter, a letter prediction module based on a 5-gram letter model. This model
estimates at every change of the context the conditional probability of each
character given the four previously typed symbols (cf. Schadle et al., 2001):

P (ci) = P (ci|ci−4, . . . , ci−1) (6.1)

Spaces between words and all punctuation signs are also taken into ac-
count for prediction. Three models were trained on large corpora for French,
German and English, respectively3. Data sparseness is managed in SibyLetter
with a simple back-off technique (cf. section 3.3.2): if a specific letter n-gram is
not observed in the training corpus, its probability is estimated from the (n-1)-
gram. As an illustration, Figure 6.6 shows the dynamic reorganization of the
letter keypad, when the user composes the first letters of the word ’three’ on
the English version of SIBYLLE (at each step only the first line of the keyboard
is displayed).

To reduce the cognitive load, this dynamic behavior should only be used in
combination with linear scanning. In this mode, the user’s attention is focused
to the selection frame and its immediate environment, and she or he is not par-
ticularly disturbed by the keypad’s reorganization. In any case, this selection
mode seems to be well accepted, compared to a static line/column mode, as
long as the user is not visually impaired (cf. also section 6.4).

6.1.3 SibyWord

In the previous three chapters, many word prediction techniques were pre-
sented and evaluated. The word predictor applied in SIBYLLE is of course

3We used newspaper corpora, as presented in section 4.4
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Figure 6.6: Reorganization of the dynamic letter keypad during the composi-
tion of the first two letters of ’three’.

based on the findings presented in these chapters. The prediction engine of
SibyWord integrates: (i) a base predictor, using word probabilities from an n-
gram-based language model, (ii) a user predictor, based on the dynamic user
model, as presented in chapter 4 (4.3.3), and (iii) a semantic predictor, making
use of Latent Semantic Analysis in order to adapt the prediction output to the
current semantic context (cf. chapter 5).

High prediction performance is however not the only requirement for a
word predictor in a real-life system. Here again, configurability plays an im-
portant role. For this reason, several parameters can be set for the use of Siby-
Word:

1. Shown words filtering: The strategy of filtering words that have been dis-
played one time has already been mentioned in chapter 4. It is based on
the assumption that a word appearing in the list and not being selected
right away is not intended; even though it may still match the given on-
set after insertion of another character, it can be filtered out for the cur-
rent prediction to leave place for other words. This strategy obviously
enhances keystroke savings (s. section 6.3.2), but it includes the risk of
missing the intended word in the list (which implies that the rest of its
characters have to be inserted). The degree of helpfulness of this strategy
depends on the user’s cognitive and visual abilities. For this reason the
filtering of already shown words can be switched off.

2. User predictor: The behavior of the user predictor (UP) can be controlled
in several ways: It can be completely disactivated, it can be reset, the au-
tomatically acquired user vocabulary (unknown words) can be modified
and deleted. Moreover the training process of the UP can be individu-
ally controlled, so that after every session it can be decided whether the
inserted text is to be added to the prediction model or not. Offering such
possibilities of control is very helpful for example in a teaching context: a
typical exercise in speech therapy lessons is to repeatedly insert a phrase
until the learner is able to type it correctly. Yet such phrases are rather
artificial and probably do not help in adapting to the user; they should
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therefore not be added to the predictor.

3. Semantic predictor: The calculations performed by the semantic predic-
tion module are rather complex and require a considerable amount of
data to be kept in working memory (approx. 180 MB). While this is un-
problematic for modern machines, it can lead to delays in the prediction
process or to execution problems on older computers. In this case the
semantic predictor can be switched off.

4. Partial selection: For languages such as German, it is important to have a
strategy for inserting compound words (see section 3.5.4 and below for
further details). Partial selection (PS) makes this possible, but it alters
the function of the backspace key, which triggers the PS mode. Since
compounding is very rare in other languages, and also occurs rarely in
oral communication, PS can be disabled.

5. Vocabulary limitation: Limiting the vocabulary seems at first counter-
intuitive, since it can be imagined that a larger vocabulary is always
beneficial for prediction. While this shows to be true from a theoretical
point of view (cf. also section 6.3.2, Table 6.9), younger children (lan-
guage learners) become quickly distracted by a large vocabulary, includ-
ing many words they have not yet learned. In such cases it is reason-
able to use only a subset of the most frequent words in for prediction.
Therefore, if the vocabulary limit is set, SibyWord calculates a frequency
ordering of the complete vocabulary and adds all terms below the limit
to the word filter.

Compounding revisited: Partial selection

In chapter 3 we have already discussed the phenomenon of productive com-
pounding in German and the problems it presents for NLP applications (cf.
section 3.5.4). In chapter 4 we have analyzed the words in some of our test
corpora which could not be predicted (out-of-vocabulary words), and we have
observed that more than half of the unknown words in the German newspaper
corpus (51%) were compounds, a finding which underlines the demand for a
solution to this problem (cf. section 4.4).

The split-compound model by Baroni et al. (2002) – as presented in section
3.5.4 – does not offer a general solution to compounding, it only addresses
a frequent type of compounds (noun+noun). Furthermore, its evaluation
showed only marginal gains in keystroke savings of up to +0,3% (cf. Trost et al.,
2005). We have therefore opted for a different strategy (also applied by Trost
et al. (2005)) which is straightforward: partial selection (PS) allows for selecting
each part of a compound one after the other and agglutinating it to the former
part by entering a backspace after selection. This alone however would not be
sufficient, because in some cases a compounding suffix has to be attached to a
modifying term (e.g. ’Vereinssitzung’ club-s-reunion). Therefore, our method
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allows a person to enter one of these morphemes (-s-, -e-, -en-, -es-, -er-)4 after
a compound part has been selected, and all nouns (starting with a capital let-
ter in German) become lowercased. Figure 6.7 gives an example for the partial
selection of a compound.

Figure 6.7: Partial selection for typing a compound (here: Donaudampfschiff-
fahrtsgesellschaft, ’Danube steamboat corporation’)

As will be shown in section 6.3.2, partial selection leads to a significant
gain in keystroke savings for German, and it is straightforward to apply (by
typing a backspace). However it can also be distracting for persons who often
mistype words (e.g. due to visual impairment), since the backspace has to be
typed twice then. In such cases it is better to disable this functionality.

6.2 Implementation issues

This section is not supposed to provide an exhaustive description of the sys-
tem’s implementation, it is rather meant to give a concise overview of the fun-
damental design decisions and the different modules of the system.

The major design principle for the implementation was to keep the archi-
tecture as modular as possible. It is an old truth in software engineering that
the encapsulation of different components is crucial for the maintenance as
well as for the extension of a system; for our project however modularity also
enables to integrate different parts of the system (such as the letter or word
predictor) to other projects5.

Another important aspect of modularity concerns language; all language-
specific parameters, menu labels and data files were kept separate from the
executing modules in order to keep the architecture generic. This makes an
extension of the system to a new language very easy. Moreover, since all pre-
diction methods applied are data-driven, and computing the data files requires
nothing but sufficient amounts of text, adapting SIBYLLE to another language

4In an extensive lexicographic analysis, Langer (1998) could determine 68 different com-
pounding suffixes. We integrated here only the five most common elements.

5In the framework of the French VOLTAIRE project, financed by the Association Française
contre les myopathies (AFM), it is planned to integrate SibyWord to the Custom Virtual Keyboard
(CVK); cf. also http://www.cvk.fr/.
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is now only a matter of days. In this way, the effort for developing a well-
performing system in even less common languages (like Dutch or Breton) is
reduced to a minimum; the problem of AAC for small user bases, as men-
tioned by Newell et al. (1998), can in principle be met.6

SIBYLLE has been implemented in Visual Basic .NET, a fully object-oriented
language, based on the Microsoft .NET framework. This platform offers a large
range of APIs and a runtime environment (Common Language Runtime, CLR), a
virtual machine enabling to execute intermediate code written in different lan-
guages (such as C#) on different system architectures. The idea of a virtual ma-
chine has already been introduced with JAVA, however it could be shown that
the Microsoft CLR performs significantly faster in a number of benchmark tests,
its runtime performance is comparable to fully compiled code (cf. Rottmann,
2004). Another important advantage of the .NET environment is the instant
availability of interfacing functions with the Windows architecture (e.g. for ac-
cessing other applications, printing or control of pointing devices) which is
crucial for a system like SIBYLLE.

In the following an overview of the different modules and their interaction
shall be given. Due to the large number of classes and modules (exceeding 60),
showing a class diagram for the whole system would not be reasonable. We
therefore show in Figure 6.8 only the major components, in order to give an
understanding of the overall architecture.

The executing class of the system is Sibylle Application. It loads the
different windows and handles all events generated by them. Window man-
agement is performed by MDI (Multiple Document Interface), enabling to work
with several windows or documents at the same time. The principal window
(MainWindow) contains the editor window as well as the keyboard, which
itself consists of several keypad windows (comprising the letter-, word- and
function keys etc.). The configuration of each keypad is stored in a separate
text file, which can easily be edited (cf. section 6.1.1, esp. Figure 6.5).

The SettingsLib class manages the configuration facilities and com-
prises a bundle of controls (SettingsControl) for parameter setting. All
selected parameters are stored in a text file (’Sibylle.ini’), and the language la-
bels are stored in another (’SibyLang.ini’). Both files are loaded on startup in
order to set the system parameters and the language according to the user’s
preferences; they are read from the user’s personal application data folder, so
that several users can work with SIBYLLE on the same machine.

The KeySelection class takes care of all selection facilities and events;
it controls the different scanning (linear or line/column) and pointing
modes (performed by LinearScan, LCScan and Pointing, respectively).
DisAbbreviation provides the facilities for abbreviation expansion, man-

6This claim is subject to two conditions: (i) the language to be integrated has to be alphabetic,
and (ii) must not be agglutinative. In languages such as Turkish, Finnish or Basque words are
formed by joining morphemes together. Here, prediction has to be based on the morpheme
rather than on the word level.
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Figure 6.8: Overview of the major components of SIBYLLE v. 3.7

aging a hashtable of abbreviation/expansion pairs which is looked up every
time a word has been terminated in the editor.

The classes LetterPrediction and WordPrediction mainly serve as
template classes, they however also comprise important preprocessing func-
tions (e.g. for partial selection). The actual prediction is however performed
by separate components, SibyLetter and SibyWord. These components are in-
terfaced as DLLs (Dynamic Link Libraries), they implement a small number of
public interfacing functions (e.g. loadData(), Predict() ), which are specified by
the interface classes ILetterPredictor and IWordPredictor. The inter-
facing via DLL makes the integration of the module to external projects par-
ticularly easy, since, after declaration of the respective DLL, the interfacing
functions can directly be applied within the foreign code.

SibyWord itself then comprises three major components: SWpredictor
provides the actual word prediction functions, including context parsing,
probability computation and candidate ranking, and it manages the user
prediction facilities (UserPredictor) as well as the semantic predictor
(SibySem). UserPredictor implements the Dynamic User Model, as pre-
sented in chapter 4 (4.3.3), and SibySem the LSA-based prediction method, as
described in the previous chapter (5.4). The exact parameters of the models
applied can be found in the respective evaluation sections (cf. 4.5.4 and 5.5).
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6.3 Performance

The evaluation sections of the previous chapters concentrated on the particular
effects of distinct model parameters. In the following we want to consider the
performance of the system as it is applied. We first present results from a
quantitative evaluation of the static and the dynamic key selection methods
incorporated and of the word predictor (SibyWord), including the adaptation
strategies presented previously. Furthermore we analyze the effects of some
user-controlled parameters, such as vocabulary limitation or partial selection.

6.3.1 Key selection

As explained in the second chapter (2.5.1), the performance of a key selection
method can be quantitatively evaluated by measuring the Average Scanning
Distance (ASD), which can be determined for static and for dynamic key ar-
rangements as well as for different kinds of scanning techniques.

To assess the performance of SibyLetter, we have again made use of the test
corpora from four different registers, as detailed in section 4.4. The probabil-
ities for the static as well as for the dynamic arrangements (using the letter
predictor) have been calculated on the same corpora, described in section 4.4.
The keys for the static arrangements are ordered by probability7 in a 5×8 key-
board layout (as can be seen in Figure 6.1). The scanning distance of upper
case letters, which are accessed in SIBYLLE via a shift-key in the function key-
pad was calculated as the distance of the respective lower case letter plus one
additional scan step. For determining the ASD only alphabetic characters and
the empty space were considered (summing up to 65 in French, 60 in German
and 53 in English).

It is obvious that register influences do not play such an important role on
the character level, however it is still important to consider the performance
for different corpora in order to get an idea of the flexibility of the approach.
Table 6.1 shows the ASD results for the three key selection methods incorpo-
rated in SIBYLLE on all test corpora considered.

As Table 6.1 shows, the results of the static scanning methods are quite sta-
ble with respect to the register as well as to the language. It is interesting to
see that the larger number of characters in French, compared to English does
not seem to influence the scanning distance (for the static linear method the
results are even identical). However the ASD of the linear method is consid-
erably higher than the one of the line-column scan. This was expected, but it
has to be remembered that this method implies more cognitive effort from the
user.

In dynamic mode the wanted character appears on the average at the 3rd to

7While the character probabilities were determined for all three languages on large newspa-
per corpora (cf. section 4.4), the ordering of the French keyboard has been slightly modified,
according to the preferences of the users at the Kerpape rehabilitation center (cf. section 6.4).
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static static dynamic
Corpus # chrs. linear line/col. SibyLetter
news-fr

65

7,1 5,0 3,1
lit-fr 6,9 4,9 3,5

speech-fr 6,8 5,1 3,9
email-fr 7,2 5,1 3,4
news-de

60

7,2 5,1 3,0
lit-de 7,2 5,1 3,1

speech-de 7,2 5,0 3,2
email-de 7,1 5,0 3,2
news-en

53

7,1 5,1 2,9
lit-en 6,9 4,9 3,1

speech-en 6,8 4,8 3,3
email-en 7,2 5,0 3,2

Table 6.1: Performance (ASD) of the the static (linear and line-column) and the
dynamic (linear) key arrangements (SibyLetter) on all test corpora

4th position of the keyboard. This is in accordance with the results of Schadle
et al. (2001). Here the ASD for French is slightly higher than for German or
English, which can be probably explained by the higher number of characters.

The differences between the registers are mostly small, however the intra-
register test corpora still show the shortest ASD in all three languages. The
French speech corpus however shows a significantly worse result (ASD = 3,9).
It is hard to find definite explanations here, but it could be due to the high
number of interjections and abrupt shifts in the conversation, making predic-
tion more difficult.

In general it can be stated that the performance of SibyLetter means an im-
portant quantitative improvement, compared to static selection techniques.
Apart from the results for speech-fr the scanning distances could be reduced
by more than 50%, with respect to the static linear scan, and by more than
30%, compared to the line-column method.

6.3.2 Word prediction

In the last two chapters the performance of the baseline word predictor as
well as of the user and the semantic adaptation models have been extensively
evaluated. Now, we focus our evaluation on some user-related parameters
such as the filtering of shown words, vocabulary reduction or partial selection,
and afterwards we will present the results for all methods combined in order
to investigate the interaction between the different adaptation methods. As
before, we will base the quantitative evaluation on the test corpora that have
been presented and applied in the previous chapters.
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Filtering of already shown words

It is obvious that removing already shown words (ASW) from the list enhances
keystroke savings, but, as discussed above, some users have difficulties to se-
lect words immediately and therefore prefer to leave them. In this regard it
is interesting to know, what difference the ASW filtering makes. We therefore
calculated keystroke savings for the newspaper corpora (using the baseline 4-
gram predictor, cf. section 4.5.1) with and without filtering. Table 6.2 displays
the results.

news-fr news-de news-en
ASW unfiltered 56,90% 50,26% 54,66%

ASW filtered 57,78% 51,56% 55,49%
Difference +0,88% +1,30% +0,83%

Table 6.2: Filtering of already shown words (ASW); baseline results (ksr5) for
the newspaper corpora

The advantages of ASW filtering (ksr5) range from +0,8% to +1,3%, which
represents a moderate but significant gain. The German corpus shows the
highest gains, which can be explained by the higher average word length in
German (5,3 characters vs. 4,5 characters for French and English, cf. section
2.5.1): The longer words are (on average) the longer they can remain in the list
and occupy space.

Considering these rather small differences, it cannot be clearly decided
whether filtering should be applied or not. A confident user will surely pre-
fer not to see a proposed word twice, however she or he has to spend more
attention, which increases the cognitive load in the long term.

Vocabulary limitation

Taking into account Zipf’s law on the frequential distribution of words, the
effect of frequency-based vocabulary limitation can be predicted: The higher
the frequency rank of the words which are excluded, the stronger the effect
becomes. Figure 6.9 displays the performance curves (ksr5) for two corpora
with increasing limitation (from 141.078 down to 5.000 words), and it confirms
our expectation.

The curves look very much the same, and they seem to follow a logarith-
mic trend: Excluding the 10.000 words with the lowest frequencies has a very
small effect on ksr (app. -0,08%); however we observe ksr5 loss of nearly 3%
when the vocabulary is reduced from 20.000 to 10.000 words. The progression
of these curves has to be taken into account when the vocabulary for a user
is to be limited. It has however also theoretical implications: Regarding the
slope in the first part of the curves, one can imagine the effect that vocabulary
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Figure 6.9: Effects of vocabulary limitation on keystroke savings (ksr5); base-
line results (ksr5) for news-fr and email-fr

extension might have. So, given the vocabulary were to be doubled, we can ex-
pect keystroke savings to increase by less than 1%. This expectation underlines
once again the importance of a user-oriented vocabulary extension: As could
be seen in chapter 4, the user lexicon, integrating all unknown words could
achieve similar gains (up to +1,5%), however – considering the OOV reduc-
tion – only a few hundred words were added. In this light an auto-adaptive
(or adaptable) lexicon shows to be a more efficient strategy than a general,
blind augmentation of the vocabulary.

Partial selection

As mentioned above, partial selection offers a simple way to deal with com-
pound words. Evaluating partial selection by emulation is however not as easy
to achieve as for word-based methods. It presumes that the user applies an
optimal selection strategy which in practice is more difficult than simply scan-
ning a prediction list to see if a word matches. Saving rates can even decrease
when simply every word onset is matched, because it then takes two more se-
lection steps to choose the following element (1 back step + 1 selection). The
results in Table 6.3 display the optimal gains, i.e. PS was only applied when
it could decrease the number of keystrokes to be typed. Since partial selec-
tion is mostly useful in handling the insertion of German compound words,
we only display the results for all German corpora here; to get an idea of the
effect of partial selection in other languages, we still included the French and
English newspaper corpora in the evaluation. The results are again based on
the 4-gram predictor (baseline, cf. section 4.5.1).
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news-de lit-de speech-de email-de news-fr news-en
PS off 51,56% 44,94% 49,10% 47,98% 57,78% 55,49%
PS on 53,05% 46,08% 49,99% 48,80% 57,94% 55,82%
Diff. +1,49% +1,14% +0,89% +0,82% +0,16% +0,33%

Table 6.3: Results (ksr5) using partial selection

For the partial selection method we can observe stable gains of +0,8 to
+1,5% for all German corpora. This is somewhat less than the results of Trost
et al. (2005) who report higher gains of app. +3% for a similar strategy, but
it still represents a significant improvement. Interestingly, partial selection
also seems to have a slightly beneficial effect for French (+0,16%) and English
(+0,33%), but as we have seen in chapter 4, compounding sometimes occurs in
these languages as well (3% of the OOV words in news-fr and 16% in news-en
were compounds).

We can therefore conclude that, even though that partial selection is a
rather simple solution to the problem of compounding, it has a beneficial ef-
fect, and it performs significantly better than the split compound model pro-
posed by Baroni et al. (2002) who report a ksr improvement of up to 0,3% only.

Combining strategies

In NLP research it has become habitual to evaluate several techniques sep-
arately against a common baseline. This is reasonable practice, since it as-
sures reproducibility and it excludes the possibility of interactions. We thus
followed this paradigm in the past chapters.

However, as we consider in this chapter the system as a whole, it is impor-
tant to see to what extent the implemented adaptation techniques complement
each other, i.e. how much the information captured by the different methods
overlaps. Therefore, we also evaluated the word predictor, including user and
semantic adaptation8 as well as partial selection. Table 6.4 shows the overall
results with all strategies combined.

Considering the results, we can observe that keystroke savings for Siby-
Word (using all strategies) remain well over 50% in all test corpora and for all
languages. The gains, compared to the (already well performing) 4-gram base-
line are quite remarkable, especially in the registers not being used for train-
ing. The speech corpora always show the highest gains (over +9%), which is
mostly due to the repetitive structures, frequently found in oral communica-
tion, which are well captured by the dynamic user model. Smaller gains are
observed for the newspaper corpora; this was expected due to the high simi-

8The adaptation methods applied are based on the Dynamic User Model (cf. section 4.3.3) and
LSA (cf. section 5.3), as described before.
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Corpus Baseline SibyWord (All On) Diff.
news-fr 57,8% 59,4% +1,5%

lit-fr 46,0% 52,2% +6,2%
speech-fr 48,3% 57,9% +9,6%
email-fr 48,6% 53,8% +5,2%
news-de 51,6% 56,9% +5,3%

lit-de 44,9% 51,8% +6,9%
speech-de 49,1% 58,4% +9,3%
email-de 48,0% 53,1% +5,1%
news-en 55,5% 57,6% +2,1%

lit-en 49,8% 54,4% +4,6%
speech-en 48,5% 57,7% +9,2%
email-en 49,4% 54,8% +5,4%

Table 6.4: Performance (ksr5) of SibyWord (+DUM, +LSA, +PS) on all test cor-
pora and differences with the baseline (4-gram)

larity with the training data.

With respect to language, the overall highest gains can be observed for
German, here even the newspaper corpora receive an advantage of more than
+5%. On the one hand this underlines the effectiveness of partial selection,
enabling to treat compound words, but on the other hand this shows in par-
ticular, how well the different strategies work together. Here the gains are
nearly additive, but also for the other languages we can observe that the meth-
ods complement each other (although to a smaller extent). In no case we can
recognize any negative interaction between the different techniques.

Altogether it can be stated that the application of the different adaptation
techniques reduces the variability of performance in an important way; the
problem of training dependency (as discussed in chapter 4) can be alleviated.
Our word predictor has theoretically proven high performance for a variety of
rather different communication situations and language styles. The practical
perspective should now be looked into.

6.4 User assessment

6.4.1 Application in a rehabilitation center

SIBYLLE benefits from the experience of seven years of daily use in the re-
habilitation center of Kerpape (Brittany, France). This center receives adult
patients and children requiring reeducation or rehabilitation care within the
framework of a full-time hospital, a day hospital or an outpatient service. The
multi-disciplinary team of professionals (physio- and ergotherapists, speech
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therapists, orthoptists, teachers and technicians) aims to optimize the inde-
pendence as well as the social and professional reinsertion of its patients.

When a communication-impaired patient arrives at Kerpape, she or he
meets all of the interacting staff, who try to determine her or his specific needs
by carrying out a number of experiments. The speech therapists analyze the
patient’s linguistic abilities and thereby find out which kind of AAC will be
most suitable (e.g. use of an iconic, phonetic or alphabetic keyboard). The er-
gotherapists determine the functional and motor capacities of the patient in or-
der to define the most appropriate input device as well as the selection modes
of the AAC system. The orthoptists then analyze the patient’s visual abilities
to ensure that all elements of the interface are clearly perceptible. When the ba-
sic parameter settings are found, the technical staff then configures the AAC
system accordingly; this step is of course performed iteratively and in close
collaboration with the patient.

Such an adaptation process can take a considerable amount of time; espe-
cially in the case of visual disability it involves several months of intense work
with the patient until the optimal configuration can be found; yet according to
the practitioners at Kerpape, it will eventually be found with SIBYLLE, due to
its far-reaching configurability (cf. 6.1.1).

Moreover, due to the intense cooperation with the speech- and ergother-
apists it was possible to take the needs of the users and their attendants into
consideration for the development of our system; in this way a number of
(rather inconspicuous) features were developed that proved to be very useful
for the interaction with the system, such as the miscellaneous keypad includ-
ing emergency phrases (cf. 6.1.1), the timing line or the possibility of vocabulary
reduction (cf. 6.1.3).

Successive versions SIBYLLE have been used by more than twenty pa-
tients, most of which have cerebral palsy or suffered from encephalitis in early
childhood. Their clinical patterns include quadriplegia, anarthria (inability
of phonation) and sometimes amblyopia (visual impairment). Some of them
are adults, but the majority are children and adolescents from the school inte-
grated in the center.

The system was highly appreciated by most users; only two of them, who
are visually strongly impaired, felt uncomfortable with the dynamic rear-
rangement of the keyboard. But even in these severe cases the practitioners
could configure the system in a way (i.e. by selecting a static keyboard lay-
out, appropriate colors and font size, and by optimizing the placement of the
keypads) that would benefit the users.

The high configurability seems to be the particular strength of SIBYLLE

(from a usability point of view). Moreover, the linguistic facilities of the system
are able to evolve with the user’s capacities and needs: A user can start with
a very simple static configuration and then successively use more advanced
features in order to speed up his/her communication rate without changing
the interface. And indeed the teachers of the Kerpape school could observe
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a significant acceleration of the text insertion process after their students had
started to use SIBYLLE. They also observed that the children accept longer
working sessions. This indicates that the use of SIBYLLE implies less physical
fatigue, compared to the AAC systems that were previously used in the center.
The reduction of the physical fatigue of the users is certainly as important as
the improvement of the communication speed (cf. Berard & Neimeijer, 2004).

Finally, we have also noticed a significant decrease of orthographic and
grammatical errors when the patients are using the system. A comparable re-
sult has already been observed with users of other word-based AAC systems
(cf. Morris et al., 1992; Carlberger et al., 1997). This observation applies in par-
ticular when the user has additional language impairments.

Despite these encouraging user experiences, a disturbing observation is
that some users do not select the intended word even though it is clearly
present in the prediction list; similar observations have been made in the
study of Biard et al. (2006). Our discussions with the users and the practi-
tioners tend to show that this situation, which obviously limits the number of
saved keystrokes and likewise the communication speed, is due to a cognitive
problem (cf. Koester & Levine, 1994): the users have difficulties writing a mes-
sage and reading the list simultaneously. A possible solution to this problem
could be to implement direct completion like in the VITIPI system (Boissière,
2000): instead of presenting a list of several word hypotheses on a specific sub
key-pad, one can propose the most probable termination of the current word
immediately after the latest typed letter.

But as we have already pointed out, due to the strongly differing physical
preconditions, each user has her or his own preferences and needs, therefore
there is no single optimal solution for the interface of an AAC device; only
offering a multitude of possible configurations can respond to the various de-
mands of AAC users.

We acknowledge that the observations made so far with the users of
SIBYLLE are still rather coarse-grained and unsystematic. However, as already
discussed in chapter 2, systematic user assessment in AAC is very hard to
achieve, since it requires a large and rather homogeneous user base (i.e. users
having similar impairments and demands), which is already difficult to ac-
quire. Moreover, as AAC users cannot easily be interviewed or asked to fill in
questionnaires, such studies require considerable effort. For these reasons we
had to constrain the user assessment in the present work to descriptive obser-
vations of the users and the practitioners at Kerpape. The collaboration with
the center will however continue, and we will also intensify our cooperations
with other centers: For example, since the end of 2007 SIBYLLE is also used at
the Fraternité Chrétienne des Handicapés, Papeete (Tahiti); in the framework of
the already mentioned VOLTAIRE project we collaborate with the Plateforme
Nouvelles Technologies at the hospital Raymond Poincaré, Garches (France). In
this way we can hope to achieve a more user-centered evaluation in the fu-
ture.

Another step towards a more systematic AAC user assessment was the
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project ESAC-IMC, a joint effort of several universities and research centers9,
which has been completed in 2007. It mainly aimed at:

• elaborating a typology of language troubles related to cerebral palsy and
characterizing the requirements of each type of user with respect to an
AAC system;

• collecting corpora and clinical profiles from AAC users in order to better
understand their communication needs;

• establishing a common evaluation framework that applies to various
AAC systems and facilitates direct comparisons.

A common XML interchange format was defined for the log files that are
being recorded during the evaluation campaign. These log files keep track of:

• all actions performed by the user, such as the keys pressed, the text writ-
ten, possible corrections and time stamps

• all replies and actions generated by the system (including predicted tex-
tual elements etc.)

The recordings with users from the rehabilitation center of Kerpape have
begun recently, it can be hoped that their analysis will bring new insight in the
way how AAC users actually communicate and in what sense systems can be
improved.

6.4.2 Analysis of user input

While, for the time being, we cannot present any results from this evaluation
campaign, we want to take a closer look onto some user data that have been
collected manually in Kerpape (saved text files). Most of the input was cre-
ated by children and adolescents who have been disabled from birth or early
childhood on. Due to their strong impairment they acquired language in a
much more passive way, by listening rather than practicing. This implies that
their grammatical and lexical capacities are often retarded or even remain non-
standard, despite full cognitive abilities. Existing AAC techniques can how-
ever only partially support a user, whose linguistic capacities do not conform
to standard language. Until now the aspect of ungrammaticality has rarely
been treated by researchers in this domain, it is however obvious that it has to
be addressed in order to provide better assistance.

To illustrate this, let us regard an example from our corpora, written by an
adolescent affected by cerebral palsy (from a birth defect):

9The project was financed by Fondation Motrice; the participating institutions
were: IRIT Toulouse, LI Tours, VALORIA Vannes, CMRRF Kerpape, Bretagne;
http://www.irit.fr/ESACIMC/
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Original utterance: tu a vu quil ya des famille qui porte plinte acose
l’handicap de leur fils. j’ai pas tous de suite compris les tenen e les abouti-
cen mais papa ma espliqué. je pence si on fait tous ça les génécologue serai
derier les baros souven.

Transliteration: tu as vu qu’il y a des familles qui portent plainte à cause
(de) l’handicap de leur fils. Je n’ai pas tout de suite compris les tenants et
les aboutissants, mais papa m’a expliqué. Je pense (que) si on fait tous ça,
les gynécologues seraient derriére les barreaux (plus) souvent.

English: you have seen that there are families going to court be-
cause of the handicap of their son. I have not immediately under-
stood the conditions and circumstances, but dad explained to me.
I think that if all of us do that, the gynecologists would often be
behind bars.

This short paragraph is quite representative for the kind of language we
are confronted with. A first remarkable aspect of this short passage is its de-
gree of elaborateness. We find relative clauses, idiosyncratic expressions (”les
tenen e les abouticen”), use of tense and conditional mood (’serai’). This confirms
once more the cognitive capacities of the author, who is able to express himself
in a complex way. On the other hand we find a large number of grammatical
and orthographical errors, which are however systematic in that the phonetic
realization of the utterance is (almost) correct (e.g. ’plinte’/’plainte’ → [plẼt];
’baros’/’barreaux’ → [baöo]). This phonetic style of writing is very typical for
AAC language, it poses however a severe problem for a word prediction sys-
tem. Obviously the user was reluctant to select the words from the prediction
list, even though they were clearly present. We do not know if this is due to
the already mentioned problem of task simultaneity or if the lexical represen-
tations of the user are deviant, so that he does not find the intended item in the
list and continues selecting characters. However, as this kind of error is sys-
tematic in the above mentioned sense, one could develop a module that aims
to replace the phonetic variant by its corresponding lexical form.

Another aspect that we have observed in our user data can be seen in the
following example; the phrases have been uttered by a girl in a discussion
group at the Kerpape school.

Original utterance: je veux décrire Michelle être grosse être gentille être
de bonne humeur être grande être forte être fille être de valeur. je ne peux
pas dire pourquoi.
je avoir mal aux épaules.
je être fatiguée.

Transliteration: Je veux décrire Michelle: elle est grosse, gentille,
de bonne humeur, grande, forte, une fille et elle est une personne
de valeur. Je ne peux pas dire pourquoi.
J’ai mal aux épaules.
Je suis fatiguée.
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English: I want to describe Michelle: she is fat, friendly, good-
humored, tall, strong, a girl, estimable. I cannot say why.
My shoulders hurt (lit.: I have (inf.) bad at the shoulders)
I am tired. (lit.: I be tired.)

The irregularities found in these phrases are again systematic: Many verbs
are often not inflected, a typical simplification strategy, which is also often ap-
plied by foreign language learners. This behavior may be explained by two
reasons: Either the user applies this simplification because she does not have
learned proper inflection, or she has developed a strategy to enter the infini-
tive form more quickly (or with less effort) than one of the inflected forms. We
deem the second explanation more probable, since we do find inflection in her
utterance (”je veux”, ”je peux”); moreover the infinitive form is only used for
the two most frequent verbs (’être’ et ’avoir’). This gives us already a hint how
this problem can be addressed: One could imagine to integrate a correction
routine replacing the infinitive by the intended inflected form. To some ex-
tent this could already be performed by our disabbreviation module, but more
elaborate strategies should be developed in the future.

To get an impression how our word predictor deals with such real user
data, we also used them as test corpora. We first separated the e-mails from the
discussion group data, so that register influences can be recognized, but since
such a separation is not realistic, we also tested on all data. The corpora are not
very large anyway: the e-mail corpus consists of 1416 words, the discussion
data of 855 words. This is certainly too small to make strong conclusions, still
we can observe some important trends. Table 6.5 shows the ksr5 results for
these corpora, tested on the baseline model (4-gram) as well as on SibyWord:

Register # words OOV (%) Baseline SibyWord (+DUM/+LSA)
E-Mail 1416 20,6% 31,8% 37,2% (+5,4%)

Discussion 855 3,0% 50,9% 60,2% (+9,3%)
All 2271 14,1% 38,9% 45,1% (+6,2%)

Table 6.5: Results (ksr5) of two user corpora

The results are quite contrastive: Whereas we observe an important loss
of performance for the e-mail data (ksr5: 37,2%), the results of the discussion
data are comparable to the previously presented results (ksr5: 60,2%). How-
ever, looking at the proportions of out-of-vocabulary words (OOV) we can
immedately see, why the e-mail data score so much worse. Here, every 5th

word is unknown (20,6%), whereas the discussion data contain only 3% of
OOV words. This underlines the necessity for the application of automated
correction procedures, as mentioned above. Some work on automatic correc-
tion of AAC input has been presented by Boissière & Dours (2001) as well as
by Sitbon et al. (2007).
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Another point to be observed in Table 6.5 is the advantage of SibyWord over
the baseline. While the corpora themselves deviate strongly from the test cor-
pora applied beforehand, the advantages of SibyWordare quite similar (+5,4%
to +9,3%). This is astonishing since the corpora are much smaller, implying
that the dynamic user model had much less data to train on. Still we measure
for the discussion corpus the highest ksr5 score of all corpora tested in this
work (60,2%). As mentioned above, we do not want to make strong claims
from these results, still they indicate that the adaptive features of SibyWord
are indeed useful in a real-word situation. We saw however as well that it
should be combined with automated correction procedures in order to reduce
the amount of grammatical and lexical irregularities.

6.5 Conclusion

This chapter was devoted to the presentation of SIBYLLE, our AAC system
which has been developed and applied since 2001. We described in detail the
user interface and its configurability, the dynamic (prediction-based) key se-
lection component SibyLetter as well as our adaptive word predictor SibyWord.
After sketching the software architecture we discussed some issues and design
criteria concerning the implementation of the system.

We then presented results of an extended quantitative evaluation of the
communication enhancing parts of the system: The dynamic key selection shows
an excellent performance, compared to static key selection methods; the aver-
age scanning distance ranges from 3 to 4 letters, which represents a 30% im-
provement with respect to a static (line-column) approach.

The keystroke saving capacities of the word predictor are also remarkable;
the results range among the best that were so far reported in the literature (cf.
sections 4.5.5 and 5.5.5), especially for German and French (ksr5 from 51,8%
to 59,4%). Moreover, the adaptation strategies of the word predictor signif-
icantly reduce the variability of performance over different registers. In the
end we also presented some findings from the application of SIBYLLE at the
rehabilitation center of Kerpape. According to the practitioners, the system
is well appreciated by the users, particularly due to its high configurability,
which enables to individually adapt its layout and its functions to the users’
capacities and preferences.

In the last part we have discussed important features of real-use data, ac-
quired from the application of SIBYLLE in Kerpape. Here, we saw that the
utterances produced contain an important amount of grammatical and lexical
irregularities, many of which are however systematic: A large part of the lexi-
cal errors are phonetic variants of the intended word, and grammatical errors
are often due to missing verb inflection. While these aspects certainly have a
negative impact on prediction, we showed that the adaptive features of Siby-
Word are able to partially compensate for them. Large improvements should
however be achieved with the application of automated correction routines.
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Chapter 7

Final remarks

Trigram models are state-of-the-art.
Trigram models are obviously braindamaged.

We did something slightly less braindamaged.

JOSHUA GOODMAN
(A bit of progress, 2001)

7.1 Conclusion

In the introduction three major objectives were formulated for this thesis. They
concern: (i) the investigation of adaptive models for word prediction, (ii) the
development of a usable assistive communication system, and (iii) the porta-
bility of this system to other languages. How far have we come?

We have evaluated two kinds of adaptive models, those adapting to the
user’s communication style and those adapting to the semantic context. With
respect to the first group of models we have shown the Dynamic User Model
(DUM) to perform very well: it is able to enhance keystroke savings to a con-
siderable extent for very different test corpora (up to +9,4%) and to reduce the
rate of out-of-vocabulary words by half. Moreover, the model could be shown
to adapt quickly: After having integrated as little as 2.000 words an improve-
ment of performance could be determined. The other two models (cache and
user lexicon) also showed reliable improvements, but their gains were inferior
in comparison to the DUM.

The other type of models aimed to adapt to the semantic context. Here
we focused in particular on Latent Semantic Analysis (LSA), a technique which
has achieved convincing results for measuring semantic similarity in a large
variety of tasks. We addressed the problem of integrating information stem-
ming from LSA with a general language model by proposing three kinds of
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approaches: a trigger approach, a n-best reranking method and different forms
of interpolation. For the latter we developed a confidence scheme, based on
the cluster density of a term in the semantic space. This weighting scheme in
combination with geometric interpolation proved to perform best on all test
corpora and languages. All in all the improvements achieved by the LSA-
enhanced prediction model were not as high as for the DUM (+1,0% - +1,7%
in ksr5), these improvements were however very stable and could be shown
to be almost complementary to the DUM.

The improvement achieved by the two adaptation methods (DUM+LSA)
in combination is convincing. Especially on corpora from registers other than
the training corpus we could see significant improvements. A major problem
of stochastic language models could therefore be addressed: By adaptation the
effect of training dependency can be reduced to a large extent.

Concerning the second objective, we refer to SIBYLLE, an assistive commu-
nication system, which incorporates the adaptive models investigated before.
In order to meet the individual requirements of many users, we spent a lot
of care on the configurability of the system. Apart from the word predictor
a number of other components enhancing communicative abilities were im-
plemented, e.g. a keypad comprising predefined phrases and a module for
abbreviation expansion. In addition the system was enabled to work with ex-
ternal applications. This is a feature of special importance, since AAC users are
particularly reliant on computer-based forms of communication (e.g. chatting
or e-mailing).

SIBYLLE has shown its practical usability during several years of use in the
rehabilitation center of Kerpape. Its high configurability enables the practi-
tioners to find a suitable configuration for every patient, even in cases of severe
visual impairment. Moreover, the facilities of the system can evolve with the
user’s development: At first the user can apply only very basic features, and
after some time of training she or he can start to make use of more complex
communication-enhancing techniques. Such a ’co-evolution’ of the system is
especially meaningful when applied with children.

The portability aspect has been addressed in a two-fold manner: On the
one hand all models were tested on corpora from three languages: French,
German and English. Whereas the results, relative to the corresponding base-
lines, were quite similar, the absolute results for German showed to be signifi-
cantly lower. An analysis of the out-of-vocabulary words indicated that this is
mainly caused by productive compounding: The OOV rates for German were
roughly twice as high as for French or English, and for some corpora half of the
OOV words were compounds. For this reason we implemented a partial se-
lection strategy that enables to predict (and select) compounds part-wise and
agglutinate them. This strategy led to some improvement in the results (up to
+1,5% in ksr5).

On the other hand the architecture of SIBYLLE was made generic, so that
language-dependent and -independent components were kept separate from



7. Final remarks 151

each other. Then the three afore mentioned languages were integrated into
the system as well as the partial selection method. This enables SIBYLLE to be
used by three important language communities. Furthermore, as for only data-
based approaches are applied for prediction, the generic architecture of the
system allows for introducing other (similar) languages with minimal effort.

7.2 Perspectives

As time is always too short, as the patience of supervisors and the endurance
of candidates is finite, many ideas and plans remain unrealized at the end of
a PhD thesis. Most of them are lost, but a few at least manage to enter the
’perspectives’ section, waiting to get picked up from there some time later.
We try to do this here, and we form two bundles, corresponding to the two
research areas where we started from.

Looking to the NLP side, we dare to claim that the invisible wall of pre-
diction performance that we have mentioned in the second chapter (2.5.2) has
come quite near. We have tried many different training corpora, smoothing
methods, adaptive and other optimization strategies, and we could see that
significant improvements will not be accomplished anymore using stochastic
language models of the n-gram type. Therefore the application of new models
is needed. One promising approach is probably to apply n-grams of variable
length (so called multigrams, cf. Deligne & Bimbot, 1995). It is clear that the
predictive power of the context is not constant, therefore its length should
be determined by information-theoretic means. Likewise the model should
be enabled to predict more than one word. Frequently recurring phrasal el-
ements like ”you’re welcome” or ”s’il te plaı̂t” and multi-word units should be
predicted at once. Here methods for the identification and integration of such
units ought to be investigated.

Another very auspicious approach has already been mentioned: Maximum
entropy models (cf. 3.6) offer an optimal way to combine information from
various information sources, they are guaranteed to find the optimal model for
the given training data, and they allow for an optimal adaptation to user input
(cf. section 4.2.2). However, as mentioned before, such models are (at present)
computationally too demanding for large-scale applications. Still, this path is
worthwhile to follow, either in order to find strategies for cutting down the
computational cost (cf. for example Chen et al., 1998; Peters & Klakow, 1999;
Chen & Rosenfeld, 2000) or to wait until computational power has achieved
the level needed for ME approaches.

A more theoretic construction site remains in the optimization of training
models. Most data-based NLP approaches employ in a rather blind fashion
large corpora of general language for training (such as we did). However a
thorough model of language generality is far from being conceived. Many cor-
pora (such as the BNC) claim to contain a representative sample of English, but
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this may only be true with respect to qualitative considerations; from a quanti-
tative perspective, present corpora are everything but well-balanced. Therefore
truly reliable probability estimates, those on which most information-theoretic
assumptions are based (cf. the Shannon-McMillan-Breiman theorem; section
3.1.1) cannot be determined for human language. Corpora like the BNC are
probably leading into the right direction, their distributional properties how-
ever have to be controlled better. Moreover, such corpora still remain to be
developed for other languages.

An interesting research direction is here of course the exploitation of the
internet as a corpus, since no larger and no more diverse and general corpus
is available. However, it also offers a lot of pitfalls, which is nicely shown in
Kilgarriff’s (2007) article on Googleology.

Turning to the AAC side, the most promising element of research is surely
the user interface. Here an interesting idea would be to extend the scope of
adaptation: One could imagine an interface taking into account every action
by the user and reconfigurating its display accordingly. A simple example
might be to equip each key with a click count, and this count could be used
to minimize the scanning distance by arranging the keys with respect to their
selection frequency.

A major weakness of our system (as of many others) still concerns the in-
tegration of the word prediction component. As mentioned in the last chapter
(cf. 6.4) we recognized in the work with the users that words are sometimes
not selected even though they are clearly visible in the list. We gave two pos-
sible explanations for this behavior: On the one hand the attention of the users
might be consumed by either the text insertion or the key selection process,
so that they neglect the prediction list (problem of task simulaneity). Possible
solutions were already mentioned: One could include the prediction directly
within the editor (direct completion) like in Boissière’s VITIPI system, or in
the letter keypad, so that the user will only have to focus her/his attention
to the selection frame. On the other hand users might have, due to difficul-
ties in language acquisition, a deviating orthographic representation of the in-
tended word (the ’phonetic’ style of writing, as illustrated in section 6.4.2). In
this case prediction will not help, since misspelled words can hardly be pre-
dicted. However, to assist the text production process, it could be reasonable
to integrate a correction module that is able to replace a misspelled phonetic
variant by its orthographically correct form.

In any case, something that we have clearly felt during our work is that
significant improvement in the area of AAC can only be achieved when re-
search is more firmly centered on the user and her or his capacities and needs.
In most research disciplines abstraction from real life is the crucial means for
progress. AAC however is an area that can only be pursued with real people,
and it will make the greater advances the more it focuses on them.
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BÉCHET, F., DE MORI, R., & JANISZEK, D. 2004. Data augmentation and language
model adaptation using singular value decomposition. Pattern Recognition Letters,
25(2004), 15–19.
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de texte sur dispositifs mobiles. In: Actes IHM’07.

BELLEGARDA, J. 1997. A Latent Semantic Analysis framework for large-span lan-
guage modeling. Pages 1451–1455 of: Proceedings of Eurospeech’97.

153



154 Bibliography

BELLEGARDA, J. 2000. Exploiting latent semantic information in statistical language
modeling. Proceedings of the IEEE, 88(8), 1279–1296.

BELLEGARDA, J. 2004. Statistical language model adaptation: review and perspec-
tives. Speech Communication, 42(2004), 93–108.

BERARD, C., & NEIMEIJER, D. 2004. Evaluating effort reduction through different
word prediction systems. In: Proceedings of the IEEE Int. Conference on Systems, Man
and Cybernetics, vol. 3.

BERGER, A. 1998. Convexity, maximum likelihood and all that. Tutorial,
Carnegie Mellon University. Available online at: http://www.cs.cmu.edu/-
afs/cs/user/aberger/www/ps/convex.ps.

BERGER, A., DELLA PIETRA, S., & DELLA PIETRA, V. 1996. A maximum entropy
approach to natural language processing. Computational Linguistics, 22(1), 1–14.

BERRY, M. 1997. Survey of public-domain Lanczos-based software. Pages 332–334
of: BROWN, J., CHU, M., ELLISON, D., & PLEMMONS, R. (eds), Proceedings of the
Cornelius Lanczos centenary conference.

BERRY, M., DRMAC, Z., & JESSUP, E. 1999. Matrices, vector spaces, and information
retrieval. SIAM Review, 41(2), 335–362.

BIARD, N., DUMAS, C., BOUTEILLE, J., POZZI, D., LOFASO, F., & LAFFONT, I. 2006.
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Résumé 

Ce travail étudie les capacités de méthodes d’adaptation pour la prédiction de mots. Le premier groupe de 
méthodes traite de l’adaptation aux préférences lexicales et syntaxiques de l’utilisateur d’un système de 
communication assistée. Au sein de ce groupe de méthodes, nous avons étudié le modèle cache, le lexique 
auto-adaptatif et le modèle d’utilisateur dynamique (MUD), intégrant toute saisie de l’utilisateur. Le deuxième 
groupe de méthodes rassemble des approches qui ont pour objectif d’exploiter le contexte sémantique. Dans ce 
contexte, nous avons en particulier étudié l’Analyse Sémantique Latente (LSA), un modèle vectoriel qui se 
base sur les propriétés distributionnelles. Dans la dernière partie nous présentons un système d’aide à la 
communication, dans lequel nous avons implémenté les méthodes d’adaptation. Après une description de 
l’interface utilisateur nous avons exposé quelques expériences réalisées avec ce système, qui est utilisé dans un 
centre de rééducation fonctionnelle. 

Mots-clés : prédiction de mots, modélisation du langage, modélisation de l’utilisateur, communication assistée, 
Analyse Sémantique Latente 

 

 

 

 

Résumé en anglais 

This thesis investigates the capacities of adaptive methods for word prediction. We present and evaluate 
several adaptation methods: First, we consider strategies enabling to adapt to the lexical and syntactic 
preferences of the user of an AAC system. Here we investigate the cache model, an auto-adaptive user lexicon 
and the dynamic user model (DUM), which integrates every input of the user. The second class of methods 
aims to adapt to the semantic context. Here we focus in particular on Latent Semantic Analysis (LSA), a 
vectorial model establishing semantic similarity from distributional properties. In the last part an assistive 
communication system is presented that implements the previously investigated adaptation methods. After a 
description of the user interface we report results from the application of this system in a rehabilitation center. 

Keywords: word prediction, language modeling, user modeling, augmentative and alternative communication, 
Latent Semantic Analysis 

 

 

 

 

 


