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In this paper, we describe the latest versioniBfISE, an AAC system that permits persons who have sever
physical disabilities to enter text with any comgrupplication, as well as to compose messages tedd out
through speech synthesis. The system consistsviofual keyboard comprising a set of keypads whattbw

for the entering of characters or full words byirgke-switch selection process. It also includemphisticated
word prediction component which dynamically caltesathe most appropriate words for a given confBxis
component is auto-adaptive, i.e. it learns withrguvext the user enters. It thus adapts its prietistto the
user's language and the current topic of commuioicas well. So far, the system works for Frenchrn@n
and English. Earlier versions oBSLLE have been used since 2001 in a rehabilitation céiiepape, France).

Categories and Subject Descriptors: J.3.3 [Comgpipéications]: Life and medical sciences

General Terms: Human Factors, ExperimentatiorfoReance.

Additional Key Words and Phrases: Augmentative Aitdrnative Communication; Virtual keyboard; Word
prediction; Latent Semantic Analysis; User adaptgtKeystroke saving rate

1. INTRODUCTION

This paper presentsiESLLE, an AAC (Augmentative and Alternative Communicajio
system for persons with severe speech and motipairments (cerebrally and physically
disabled persond,ocked-in syndrome, cerebral palsy etc.). Whatever the disea
impairment considered, oral communication is imfmesfor these persons whalso
have serious difficulties in physically controllinbeir environment. In particular, they
are not able to use the standard input devicesaafnaputer. Like other AAC systems,
such asFASTY[Trost et al., 2005] oDasher [Ward et al., 2000] BYLLE aims at

restoring the communicative abilities of these pess
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Many AAC systems have a very similar architecturensisting of 4 components
(Figure 1). At first, one finds a physical inputdrface connected to the computer. This
device is adapted to the motion capacities of $er.uNhen the latter must be restricted
to a single switch (eye glimpse or breath sensor, ifistance), the control of the

environment is reduced to a mere Yes/No command.
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Fig. 1. Architecture of most AAC systems

Secondly, a virtual keyboard replaces the phydiegboard by displaying a table of
symbols (words, letters or icons) on screen. bvedl the user to select successively the
symbols that will compose the intended messageSiyLLE, symbol selection is
achieved by a linear scan procedure: a cursor sesedy highlights each key of the
virtual keyboard which can then be selected byutie.

The last two components are a text editor and &ttespeech synthesizer, which is
used to read out the typed messagesfwoken communication. The latest version of
SBYLLE works for French, German and English, and it igbles with anyWindows]
application (text editor, web browser, mailer...).

The main challenge of AAC systems results from #lewness of message
composition. Whereas people can produce up to 2@@dsvper minute in oral
communication, persons using an AAC device canyym more than 1 to 15 words per
minute, depending on their abilities and the canfiion of the system [Alm et al,,
1992]; moreover, this task is very tiring.

We thus investigate two complementary approachiemded to speed up text input:
fast key selection and keystroke reduction. Thesprévements are based on two
prediction modules which will be described in tpaper. At first, we present the user
interface of our system. Sections 3 and 4 desdniluetail the prediction modules which

have been developed foBSLLE .



In sections 5 and 6 we describe and evaluate thetatibn capacities of the word
prediction component, which takes into accountuser’'s way of speaking, as well as the
current semantic context. Finally, we present séins¢ results from user feedback and
give a brief outlook on the following steps we plantake in the development of our

system.

2. SIBYLLE: THE USER INTERFACE

2.1. Interface design of an AAC system

Although text entry methods can significantly impeahe efficiency of an AAC system,

its usability mainly depends on its user interfagdarge diversity of interfaces can be

found in the literature. This heterogeneity restiten the variety of human factors that
directly affect the usability of an interface:

1. Physical or motor control abilities of the usef:the user is still able to control to a
certain extent his/her gestures, devices such fsgar guideor agrid keyboard
could be added onto the physical keyboard to aeaidneous selections. When the
motor control abilities of the user are more restd, the use of a virtual keyboard
becomes indispensable. Although one can imagirege Ivariety of arrangements,
most AAC systems emulate the functions of a stahgidnysical keyboard. Some
enable however the user to define his/her own kagbgcf. Vella et al., 2005]. In
some cases, the user is still able to control asmobut most of the time, he/she can
only use a single input device. Then, key seledamsually achieved by a scanning
procedure. Alternatives to this standard solutitso &xist. For instance, thHeasher
system proposes an inventive procedure of dynamoevding between plausible
letters, controlled by eye movements [Ward et241Q0].

2. Cognitive abilities of the usetext entry methods are only useful when the ussr h
sufficient linguistic knowledge or at least a certphonetic ability. Young children
or people who have additional language disordgphgsia, dyslexia) will therefore
employ a virtual keyboard with iconic keys. Sevexpdtems have developed such an
interface [cf. Baker, 1982; Abraham, 2002].

3. Perceptive abilities of the usesome diseases or disabilities can include addition
perceptive difficulties (e.g. cerebral palsy). Hpstance, people whose vision is
disturbed by rapid movements could have difficgltissing a dynamic keyboard like
in the Dashersystem. A static keyboard with standard scannsnigetter adapted to
this type of case, although its theoretic commuidcerate is lower.

4. Keystroke saving methodnost AAC systems include some method to speed up

communication by trying to save the number of kejsts needed for the



composition of a message. Some systems have igatsdi abbreviation expansion
for text input [McCoy and Demasco, 1995; Willisat, 2002; Shieber and Baker,
2003]: here the user types an abbreviated formwiihbe automatically expanded
by the system. Other AAC systems use predictiohrtiegies to reduce keystrokes.
Two main strategies can be found here: on the amel,hthe system only considers
the most probable word, which is directly insertedhe message [cf. Boissiére and
Dours, 2001], an approach often referred to asdvemmpletion’. On the other hand,
a list of words is provided [Trost et al., 2005;r&& and Neimeijer, 2004], from
which the user can then select the intended word.

As demonstrated so far, many factors influence usability of an AAC system. It is

therefore of first importance in the design of suchsystem to keep the interface as

adaptable as possible to the user’s needs.

2.2 User interface of SIBYLLE
The development of our system has been orientedyadew major design decisions:
= SBYLLE is above all designed for single switch input desi(users with severe
motor impairments),
= Keystroke reduction is based on a word predictiateh even if 8YLLE also
includes a basic module for abbreviation expansion.
= For users who are not visually impaired, a fast kejection technique is
proposed by means of a dynamic reorganizationeokétyboard (see below).
Figure 2 shows the latest version of the user fater of $8YLLE. The virtual
keyboard combines a set of sub-keypads offerinmdert letters, numbers, words and
also predefined sentences for "emergency” useg. (¢.am hungry, | want to dririf
Jump keys provide fast moves between these sulalisyphey are usually the first keys
on each keypad. The different keypads of the iaterfare displayed in Figure 2.
= Letter keypad: it is used to compose messagesactearafter character. When
the user activates the letter prediction compol€@BYLLE (s. section 3) with
the linear scan mode, the keys are dynamicallyaaged in order to present the
most probable letters first. Since punctuation sigmd numbers are hardly
predictable, they are displayed in a separate lkkypaus, the letter keypad only
comprises alphabetic characters, as well as treespanbol.
= Prediction list when the user selects one of these predicted syatdis
automatically inserted in the message. The usechaase between a horizontal
and a vertical layoutf the list.
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Fig. 2. The user interface of 8YLLE (version 3.6, English)
Previous works have suggested that a vertical germaent of the word list is
better accepted than a horizontal one [cf. Garagsid and Abascal, 2006].
Function keypadthis keypad is displayed by default on the uppera of the
user interface. In former versionsiB®.LE only comprised an integrated text
editor connected with a text-to-speech synthesizipglication. But since users
also want to compose e-mails, use a real word psaceor a search engine on
the web, we decided to makeB®.LE more flexible. By interfacing the
Microsoft WindowsAPI, our system is now able to enter text in amydkof
Windows application. Furthermore, configurable functiony&eenable direct
action such aSave AsOpenor speech synthesis.
Navigationkeypad like in an ordinary physical keyboard, this kegipenables
the user to move the text cursor without operatingiouse. It should be used
when composing messages, but is above all usefuloie the pointer between
the menus of anwindowsapplication.
Miscellaneous keypadhis keypad can be used in several modes. Onesmit
to select numbers, but also punctuation marks, feradly to select predefined
sentences or messages. These messages can bel ddajke user. Figure 3
shows the different default layouts of the keypacbading to the selected mode.
Pre-recorded messages are represented by addtie\We plan to allow the user
to define her or his own icon sets in the shorhter
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Fig. 3. The three-fold layout of the miscellaneoukeypad according to the selected mode (left:
number selection, middle: punctuation, right: pre-recorded messages)
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When the user is not able to control a mouse, ladgction is performed by a
scanning strategy: a selection frame successivghliphts each key, which can then be
selected. Experiments with our system have shoanttte users are often disturbed by
the abrupt shifts of the selection frame. Whencilmsor approaches the desired key, they
have difficulties to temporally prepare their antid\s a result, we observed a significant
rate of selection errors. For this reason we halded a timing line, whiclyently glides
from the top to the bottom of the frame (Figureadyl shows the time remaining until the

next shift by its position. This temporal feedb&els proven useful to many users.

Fig. 4. Selection frame with the timing line
For users who are still able to control the keystrduration, we have implemented a
click timerto which specific functions (such as erasing, tediging or jumping to other
windows) can be assigned. This timer distinguisi$o three durations (short/long/very

long click).

Add abbreviation @

Abbreviation gmn

Equivalent Good morring)|

oK | [ Cancel | [ add ]

Editlist |

Fig. 5. User interface for the definition of abbrevations
SBYLLE also includes a module for abbreviation expansidgns component enables
the user to define his/her own abbreviations that directly expanded during the
composition of a message (Figure 5).



2.3 Interface configurability

One of the most distinguishing features @YSLE is the high adaptability of its user

interface: In order to best meet the individualuiegments of every user, we designed all

interactive elements as modifiable as possibles Bixiends to the whole layout of the

interface, for example:

= Keyboard renderingColors, fonts and font size of all keyboards adl\as

the keys themselves can be modified and rearranged.

= Selection parameter§canning mode, scanning delays, time spans agd lo

click functionality (such as direct jumps to otheindows or capitalizing)

are adjustable.

= Interface layout The size and position of every sub-keypad witthe

application window can be set individually.

Figure 6 shows some of the configuration paneSIBfLLE .
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Fig. 6. Two of the configuration panels oBiBYLLE (v.3.6)

An optimal adaptation of the interface however cércourse only be achieved by

close interaction between the user and the mesliatl (cf. also section 7).

3. FAST KEY SELECTION: SIBYLETTER

In many AAC systems, key selection is achieved aidine/column scan which

significantly reduces the average number of cusdiits needed to reach the intended

key. However, this selection mode requires two Wekes per item selection. We

learned from user feedback that this kind of sedads rapidly tiring. For this reason we

implemented in BYLLE a linear scanning mode: the cursor highlightstadl keys one

after the other, and only one keystroke is neededsdect the desired key when

highlighted.



In order to speed up communication with a lineansprocedure, a basic idea is to
order the letters according to their frequencyhe tonsidered language. A frequency-
ordered keyboard has a significantly lower acciess than a standard QWERTY layout.
An even faster access can still be achieved if l#teer ordering is dynamically
rearranged, according to the probability of eacaratter in the current context. Ax *
for example is much more probable after erthan after at’ or a j’. The letter keypad
of SBYLLE is updated after every selection, so that the miagtable letters according to
those already composed are presented first. Thansignreordering of the keypad is
directed bySibyl etter a letter prediction module based on a 5-graneretiodel. This
statistic model estimates at every given moment dbeditional probability of each

character given the four previously typed symbocis$chadle, 2004]:

P(@)=P(c |Ci1, ...\ Ga). 1)

Spaces between words and all punctuation signscasdered in the context of these
last four characters. Three models were traineslititr large corpora for French, German
and English. Data sparseness is managed with deslmapk-off technique [Allen, 1997]:
if a specific n-gram is not observed in the trajnitorpus, its probability is estimated
from the @-1)-gram. As an illustration, Figure 6 shows th@aiyic reorganization of the
letter keypad, when the user composes the firgrieof the wordthre€ on the English
version of BYLLE.

ﬁ b & T a i S (o}

' beforet
‘ﬁ b AN N h 0 r e a

- aftert
LAl I AN I a i o r

- afterth

Fig. 7. Reorganization of the dynamic letter keypadiuring
the composition of the first two letters of ‘three’

This dynamic behavior can only be activated whenuser has chosen the linear scan
for selection. In this mode, his/her attention égused to the selection frame and its
immediate environment. For this reason the useoidisturbed by the reorganization of
the keypad. This certainly explains why the dynaasipect of the interface does not seem
to increase significantly the cognitive load on thgers, in comparison to a static
line/column keyboard (cf. section 7).

To assess the performance SibyLetter we have conducted an experiment on two
newspaper corpora of app. 50,000 worddurfanité (French) andTageszeitung

(German)). Our results show that in the dynamic enttee wanted character appears on



the average at thé'osition of the keyboard (Table I, cf. also [Sdeaet al., 2001]).
This result is remarkable, compared to a standarelcolumn scan, which requires
approximately 9 shifts.

Obviously, equivalent results can be reached witlyrsamic reordering based on the
consideration of a frequency-based dictionary. @erest of our approach is precisely
that we are able to achieve fast key selectionowitithe use of a dictionary. This is an
important point considering that out-of-vocabulargrds (OOV) and especially typing or
spelling errors affect the robustness of AAC system

. Avg. number of | Nb. of keystrokes
Selection mode Language ;
shifts per char. per character
static line / column scan French/German 9,0 2
static linear scan French 33,0 1
SIBYLLE : dynamic linear| French 2,7 1
scan
(5-gram) German 3,0 1

Table I. Comparison of different selection modes wi a 64 char. set (upper and lower case)

4. SAVING KEYSTROKES: SIBYWORD

Another major strategy to accelerate communicatido reduce the number of characters
that have to be typed. In our system, keystrokeigtan is mainly achieved by word
prediction, a technique that has been shown to dspge communication rates
considerably in an AAC system, especially, wheisitontext sensitive [Trnka et al.,
2007]. The latest version of our word predictSibyWord is not only sensitive to the
context, it also adapts to the user’'s way of comicating as well as to the current topic
of discourse. In the following we will present thaderlying statistical model, making

this adaptation possible.

4.1 Theoretical basis of word prediction
Word prediction is only possible because naturaflege is highly redundant. Every
word prediction method eventually exploits thisuadancy, be it of syntactic or semantic
nature.

Syntactic redundancy results from the implicit kiedge that every speaker has on
the statistical properties of his/her language,leveémantic redundancy results from the
world knowledge of a communicating person, who lideato interpret each message

within a meaningful situational context.



The aspect of redundancy in language is closebtedl|to its information content.
This has been already observed by Claude Shannbis iseminal work on information
theory [1948] and his later works. In his artialerh 1951, Shannon measured the amount
of redundancy by an approximation of the probab#istimate of a symbol at position
given then-1 symbols to the left. By augmenting the sizenphe could estimate upper
and lower bounds for the entropy of the languagaai He thus calculated for English a
lower bound of about 1 bit per character, which esmp to a redundancy of app. 75%.

From a theoretical point of view, a word predictmsically plays a (word-based)
‘Shannon ganigas defined in [Shannon, 1951]: given a left eomtof n-1 symbols, it
tries to determine the most probable symbol attipmsn; if it is right, it enters one of the
symbols, if not, the user has to provide the follmysymbol and the game continues.

4.2 The base model of SibyWord

Our word prediction componentSibyWord predicts the most appropriate words
considering the context of the words already writtEhese words are then displayed in
the prediction list (s. Figure 2). When the useleds one of these words, it is
automatically inserted (or completed) in the curtent.

SibyWord is based on a stochastic language model (LM), hvhéstimates the
probability of occurrence for any word in the lexic according to the 3 previously
inserted words (4-gram). We trained three modelsH@nch, German and English on
newspaper corpora (cf. Table I1). Using ®RItoolkit [Stolcke, 2002]we computed a 4-
gram LM over a controlled vocabulary of app. 140,0@rds. To deal with unseen word
combinations, we usednodified Kneser-Neydiscounting [Goodman, 2001] as a
smoothing method, and we appli8tbickepruning [Stolcke, 1998] to reduce the model to
a manageable size (threshéld 10").

Training size

Vocabul
Corpus Language (number. of words) (nun?k(;:r gfe\l,%rds)
Le Monde French 44,000,000 141,078
(1998-1999)
Tageszeitung German 37,000,000 141,242
(1997-1999)
The Guardian English 49,000,000 133,558
(1997-1998)

Table Il. Word prediction model: training data

1 SRI Toolkit: www.speech.sri.com.



Suppose that the user wants to compose the folpwémtence: Most children like
ice cream Once the first two words are composeds¥aLE proposes the following
prediction list:in, and are, who and with (s. Figure 7). All of these proposals are
syntactically correct, but none of them correspdandbe intended word.

Most children in and are who with

Most children | learning |  like live learn love

Fig. 8. Successive prediction lists of SibyWord {&ord prediction list in horizontal mode)

Then, the user selects the first lettediké. The system now filters out all words not
starting with I’, the intended wordike appears in second position in the list, and itlman
selected by the user.

It can be assumed that a word appearing in thaidtnot being selected right away is
not intended; even though it still matches the gibeginning after insertion of another
character, it can be filtered out to leave place dther words. This filtering strategy
enhances keystroke savings (s. section 6.1), lsitoit course risky, since the user might
have missed the intended word in the list and thes to insert all its characters. The
degree of helpfulness of this strategy dependshenuser's cognitive abilities. For
example, persons with visual or memory impairmenight often miss a word in the
prediction list. For this reason the filtering dfedy shown words can be switched off.

First, experiments have shown that our baselineahisdable to save more than half
of the keystrokes (based on user emulation). Howelaguage models are highly
dependent on their training resources. The perfoomaf a language model, trained on
newspaper text, will significantly decrease in resdge (normally users do not speak the
way newspaper journalists write). We have condustbral experiments to assess this
potential degradation [Wandmacher and Antoine, 20§ifilar observations have been
made by Trnka and McCoy [2007]. They show thatpgbeformance of a word predictor
decreases up to 30%, when the language style aésheorpus is very different from the
training data. However, large training corpora gedimilar to the language style of AAC
users do not (yet) exist. Newspaper corpora, wareheasily available in large quantities,
represent here a (surely non-optimal) compromisevden language generality and data
abundance.

Besides, since the users respond to very variedcali patterns and will use AAC
systems for varied purposes, we face multi-factaeguests for adaptation. Previous

works already emphasized the importance of adaptétr AAC systems [cf. Trost et al.



2005; Trnka et al. 2006, Trnka and McCoy, 2007].ev¢as these works only consider
user adaptation, we have now investigated two kafdslaptation:
= User adaptation which aims at adapting the word predictor to theer's
language style (long-term adaptation).
= Semantic adaptationwhich aims at dynamically favoring words that dvej
semantically to the current topic of communicat{short-term adaptation).
In the following section we present the differentaptation techniques that we have
implemented irSibyWord

5. ADAPTATION TECHNIQUES
5.1 User Adaptation: Dynamic User Model
User adaptation is achieved by the integrationwad tanguage models: a large base
model (4-gram), trained on @ewspapercorpus and a dynamic user model (DUM), a
trigram model which is trained on every text congzbby the user; words which are not
yet in the general vocabulary (out-of-vocabularyrdgy OOV) are integrated to the
model, as well as user-defined abbreviations (&i®®2.2). The abbreviations can then
be directly selected from the word prediction éistl are expanded in the text without any
further effort.

The base LM reflects the general language, whileDUM adapts the latter to the
specific style and vocabulary of the user. The glagivobability P’ (w) for a wordw, is

estimated by linear interpolation of the two models
P’ (Wi) = A1 PpasdWi | Wi-1 Wi-2Wi-3) + A2 Poum(Wi | Wi-1 Wi-2) (2)

where 4,, 1, are weighting coefficientsi{ + A, = 1). They are dynamically adapted,
depending on the average success of each of thelsnod previous predictions. To
calculate these parameters, we apply an EM-stygerighm, [cf. Jelinek, 1990]. It is
obvious that this kind of user-sensitive trainirged not lead to immediate improvements
of the predictor; it is long-term adaptation
From a practical point of view, three alternatit@tegies are proposed to the user:
= No adaptationthe DUM is not activated. There is no learning be messages
composed by the user.
= Implicit adaptation the messages composed by the user are systeligaifed
for training the DUM
= Explicit adaptation every time the user wants to exit the systemoihshe is
asked whether the text of the current sessionlietased for training.



Such a configurable strategy of adaptation isrst fmportance, since users may have
additional cognitive disorders or simply be youngldren with restricted linguistic
knowledge. Their messages can therefore preskigtharate of spelling or grammatical
errors. It is not clear whether the DUM should grade these erroneous productions or
not: some users favor communication speed and t@are whether the messages are
grammatically correct, provided their errors do dagturb the speech synthesis. On the
contrary, in an educational setting, teachers arainlyn practitioners (e.g. speech

therapists) may insist on the correctness of tlee siproductions.

5.2 Semantic adaptation

Several works have already investigated the questighort-term adaptation of language
models. In particulargache(or recency promotionmodels [Kuhn and De Mori, 1990]
provide a simple adaptation to the currently typext by enhancing the probability of
recently inserted words. The underlying idea herhat words that have already occurred
in a text are more likely to occur another timeefiéiore their probability is raised by a
constant or an exponentially decaying factor [(3arkand Robinson, 1997], depending
on the position of the element in the cache. Tlea iof a decaying cache function is that
the probability of reoccurrence depends on theadist between the word in the cache
and the word to be predicted. The highest proligibili reoccurrence is usually after 15
to 20 words and it decreases to normal after a@@0lwords.

Cache-based models have shown to bring slight bustant gains for keystroke
savings [Wandmacher and Antoine, 2006]. Here, wedtigate a more sophisticated
solution for achieving a context-sensitive adaptatit can normally be assumed that a
text to be entered focuses on some topic; therefiorels that are semantically related to
this topic should have a higher probability of ateace, whereas unrelated words should
receive a lower probability.

Explicit topic adaptation tries to determine thereunt topic of conversation and then
to select the most adequate model for predictitis $trategy however has hardly proved
to be efficient, mainly due to the difficulty inl@ieving robust topic detection [Bigi et al.,
2001]. Our aim is, therefore, to achieve an implicipic adaptation by taking the
semantic similarity between a word and the semdield of the context into account.
The semantic field is not rigidly coupled to a eérttopic, it evolves smoothly with the

development of the context; therefore explicit togétection is not needed.



5.2.1 Latent Semantic Analysis
Several works have suggested the uséd.aient Semantic AnalysidSA in order to
integrate semantic similarity to a language modgtllegarda, 1997; Coccaro and
Jurafsky, 1998]Latent Semantic Analys[®eerwester et al., 1990] is a technique that
models semantic similarity based on co-occurrensgiloutions of wordsLSA which is
founded on cognitive motivations [Landauer et 4B97], is able to relate coherent
contexts to specific content words, and it is gabgredicting the occurrence of a content
word in the presence of other thematically reldégths. Since it does not take word order
into account (“bag-of-words” model), it is howewveery poor at predicting their actual
position within the sentence, and it is completelgeless for the prediction of
grammatical words (e.gof, ‘thé€, ‘to)).

x fJterm; ... term,
term,  SVD term
co-occurrence | ff, oo N _f""""" 2
= L P
x X o e
« xJem o f. term..

t Reduced
coom matrix

Fig. 9. Schematic process of LSA training
From a formal point of viewl.SAis based on the vector space model of information
retrieval [Salton and McGill, 1983]. At first, avgin training corpus is transformed into a
termx context matrix, displaying the occurrences of eacnd in each context (Figure
8). A context can be a word window, a sentencearagraph or a full text. FArSA a
paragraph window is normally assumed. The decistep in theLSA process is then a
Singular Value DecompositiaisVD of the weighted matrix. Thereby an original matri

Ais decomposed as follows:
SVDA)=U -3 V' ®3)

MatricesU andV consist of the eigenvectors of the columns andsrofA. 3 is a
diagonal matrix containing the singular valueg\dh descending order. By only keeping
the k strongest K usually being around 300) singular values and iplyihg >, with
eitherU or V, one can construct a so-called semantic spacihdaterms or the contexts,
respectively. Each wordv is then represented as a vectorkoflimensions, whose
distance to others can be compared by a standatdrwéistance measure. In mass$A
approaches the cosine measure is used. By caiwltite cosine of the angle between

one term vector and all the others, a ranked fistext neighbors can be obtained for a



given word. From th&SApoint of view, these neighbors should be semaliyicalated
to the word.

5.2.2 Building an LSA-based language model

How can the semantic information as provided by UI#Aused for prediction purposes?
As already explained, LSA offers a convenient waycalculate the semantic distance
between words being represented as vectors in ladilgensional space. This also
extends to phrases, paragraphs or even full doctsmewery textual element can be
represented and compared within the same vectoespenply by calculating the sum of
the vectors of the words it contains. We can, tloeee represent our given current
context or histonh (= w,, ..., w,) by the (normalized) sum of the vectors correspaond
to the words the history contains [Landauer et1&®97]:

h=>w 4)

i=1

=

This context vector has the same dimensionalitythes term vectors. It can be
compared to the term vectors by any vector sintylarieasure. For our AAC application,
we make the assumption that an utterance or atdelxé entered by the user is usually
semantically cohesive. We then expect all wordamscto be close to the current context
vector. This forms the basis for a simple (pseugwebabilistic model based drSA

after calculating the similarity for each word vacty with the vectorh of the current
context, we could use the normalized distancesralsapility values. This probability
distribution, however, is usually rather flat (itke dynamic range is low). For this reason
a contrasting (or temperature) factpis applied [Coccaro and Jurafsky, 1998], which
raises the cosine to some powgis(normally between 3 and 8; we got best resuitls w
y =4). After normalization we obtain a probability-lildistribution, which can be used

for prediction purposes. It is calculated as fobow

PLSA(W ‘h) = (COSQTV' ! ﬁ) - Cosmm (ﬁ)) "‘

> ((:OSQTVk ,h)-cos,, (ﬁ))

wherew, is a word in the vocabular,is the current context (history) and g )

(®)

returns the lowest cosine value measured Havith all present word vectors). The
denominator then normalizes the similarity valueensure that they sum up to 1.

Let us illustrate the capacities of this model yirgy a short example from the English
version of our own LSA predictor. Suppose thatuber has already typed the following
beginning of a phrase:



Ex. 1 The game was nearly over when the ball
Table Il shows the ten words that present the éstji. SA probabilities with the
context vector corresponding to Example 1: all pradicted words are semantically
related to the context, they should, thereforegilsen a higher probability.

Rank | Term Psa Rank | Term Pisa

1 game 0,0191 | 6 upfield 0,0081

2 kick 0,0189 |7 volley 0,0076

3 offside 0,0113 | 8 touchline | 0,0045
4 pass 0,0112 | 9 referee 0,0036
5 tackles 0,0081 | 10 pitch 0,0033

Table Ill. Most probable words provided by LSA for the above sentence (1) as a given context
However, this example also shows the drawbackshef tSA model: it totally
neglects the presence of function words, as wethassyntactic structure of the current
phrase. We, therefore, need to integrate the irdon coming from a standard n-gram

model and the LSA approach.

Interpolation is the usual way to integrate infotima from heterogeneous resources.
While for a linear combination we simply add theigited probabilities of two (or more)
models, geometric interpolation multiplies the m@bitities, which are weighted by an
exponential coefficient € <1).
pr(w) = M)  TRW)™ ©

T R(w) P (W)

In our case, geometric interpolation gives bettesults [cf. Wandmacher and
Antoine, 2007a], since it takes the agreement ofrtvodels into account. Only if each of
the single models assigns a high probability tdvergevent, the combined probability
will be high. If one of the models assigns a higilue and the other does not, the
resulting probability will be lower than the lineaverage.

Finally, whereas in standard settings the intetmmacoefficients are stable for all
probabilities, we use confidence-weighted coeffitie that are adapted for each
probability. Coccaro & Jurafsky [1998] proposedesmtropy-related confidence measure,
based on the assumption that words occurring inyndiferent contexts (i.e. have a high
entropy), cannot be well predicted h$A Measuring relation quality in anSA space,
Wandmacher [2005] showed, however, that the entof@yterm does not correlate with
relation quality (i.e. the number of semanticalyated terms in an LSA-generated term
cluster). Instead he foundedium correlation between the number of semaiyicalated



terms and the average distance of thenearest neighbors (density). The closer the
nearest neighbors of a term vector are, the mareagile it is to find semantically related
terms for the given word. In turn, terms havingighhdensity are more likely to be
semantically related to a given context and thues more probable to be correctly

predicted. We define the density of a tesmas follows:
1 & _ _
Dm(vvi)=aDZcosw,NNj(wi)) (7)
j=1

In the following we will use this measure (with=100) as a confidence metric to
estimate the reliability of a word being predictedthe LSA component. To be used as
an interpolation coefficienD,, (w) is modified in the following way:

2 =B MD(w), iff D(w) > 0; 0 otherwise (8)

with B being a weighting constant to control the influerd the LSA predictor. For all
experiments, we s¢tto 0.4 (i.e. & A < 0.4), which proved to be optimal here.

For calculating the LSA space, we used lifemaptoolkit? and generated a term x
term co-occurrence matrix for an 80,000 word votatyu(matrix size = 80,000 x 3,000
keywords), grammatical words were excluded (Table We set the size of the co-
occurrence window to +100, and the matrix was thmeduced by singular value
decomposition to 150 columns. Table IV lists tharing corpora that we used for the
calculation of the LSA space.

Training size

Corpus Language (nb. of words)

Le Monde (1989-98) French 100,000,000

Die Tageszeitun1989-1999) German 101,000,000
The Time® The Guardian(93-98) English 108,000,000

Table IV. LSA model: training data

5.2.3 Semantic adaptation: related work
A number of approaches have tried to adapt a woedigtor to the current semantic
context. On the one hand, there are methods l&eties described in [Trost et al., 2005]
and [Li and Hirst, 2005] that make use of thgger model, as presented by Rosenfeld
[1996].

Infomap Projecthttp://infomap-nlp.sourceforge.net/



This model is based on the idea that the appearainaavordx (the trigger) makes
the appearance of another, semantically related wofthe target) more likely. For
example, if a word like foul’ has already occurred in the textefereé or “ penalty are
much more likely to appear. The trigger-target paire usually calculated by collocation
measures (such d@oint-Wise Mutual Informatigncf. Church and Hanks, 1989) from
large corpora. Trost et al. [2005] have evaluatezhsa model for German, however their
gains remained modest.

On the other hand, approaches like the one by Tatkal. [2005] make use of
topically assigned corpora, from each of which pasate language model is calculated.
These single topic-related LMs are then dynamidallgrpolated, so that the overall LM
gives the highest weight to the LM whose topic igsest to the current topic of
discourse. This model seems to yield rather gosdlt® However, one of its drawbacks
is the need for topically assigned corpora. Suctpaa exist for English (e.g. the
Switchboardcorpus), but they are not (yet) available for ofheguages such as German
or French.

5.3 Treatment of compound words

When it comes to prediction purposes, German iatlker difficult language. It has a
complex morphology comprising three genders (maseufeminine, neuter) and four
noun cases (nominative, genitive, accusative, dgtiwhich multiplies the number of
possible inflected word forms. The principal problehowever, is the treatment of
German compound words, which are realized as alesinghographic unit. The
formation process is productive (i.e. the numbepadsible words formed in this way is
infinite), and it can lead to words of sometimetoashing length. This characteristic
can also be found in other Germanic languages asidbutch or Swedish. The examples
in Table V illustrate the productivity of the forti@n. The frequencies for these
compounds have been determined on a corpus cargammore than 120 million words,
and they clearly show the problem: even thoughldis¢ three words represent well-

formed compounds, they are very unlikely to be fbima corpus of any size.

Word / Compound Frequency
Wort‘word’ 39,241
Wortvorhersageword prediction’ 0
Wortvorhersagemodivord prediction module’ 0
Wortvorhersagemodulentwicklurdevelopment 0

of word prediction modules’

Table V. Formation of German compound words and thi frequencies in a 120 million
German newspaper corpus



Baroni et al. [2002] have analyzed a large Germamswire corpus (APA), and they
found that nearly half of the unique words (typieshhat corpus were compounds. Most
of them had a very low frequency, a big part atyuatcurred only once. Since even
large predefined lexicons normally do not coverhsuords, they cannot be predicted.
Moreover, since they are usually rather long, thes#gative impact on prediction
performance is rather significant, when no furtimeans is given.

To deal with this problem for word prediction, Barcet al. present an adapted
prediction model gplit compound modgl It considers the internal morphological
structure of compounds, which are analyzed inteadrand a modifier part. For example,
a noun-noun compound lik€olizeikontrolle (‘police control’) is split intoPolizei
(modifier) andKontrolle (head), and each part is then predicted separathty gains of
this complex model remain however very low.

We have, therefore, opted for a different strateglyich is very simple: oupartial
selection (PS) method allows for the selecting of each pdrtaocompound and
agglutinating it to the former part by entering ackspace after selection. This alone
however would not be sufficient, because sometitwesparts are joined by a so-called
joint morpheme (e.g. Hundenase ‘dog-e-nose’ or Vereirssitzung ‘club-s-reunion’).
Therefore, our method allows a person to enterabrtkese morphemes (‘-s-', ‘-e-', *-en-

‘, -es-', "-er-) after a compound part has beetested.

6. RESULTS

6.1 Objective evaluation: keystroke saving rate

It is difficult to assess objectively how a wordegictor can really speed up
communication rates. Indeed, the observed improw&nsgtronglydepend on the user,
and on the interaction between the prediction carepb and the user interface. As a
result, the evaluation of an AAC system should twes@ered along several perspectives,
such as:

= usability of the user interface,

= performance of the word prediction component,

= environmental evaluation of the complete systemoritler to assess how the

different components of the system interact.

In this section, we will only concentrate on thefpemances of the text prediction
component. Two kinds of objective evaluation redate prediction are reported in the
literature [Garay-Vitoria and Abascal, 2006):

= Empirical evaluationhuman testing based on the observations and the typing

speed of several users



= User emulation an emulation module enters a test corpus udiegword
predictor and thereby calculates a standardizelli@an measure.

The pros and cons of these two approaches ardmaliin. On the one hand, human
testing provides results that include the influenféhuman factors like writing errors,
fatigue, learning time etc. But these observatisingengly depend on the recruited users
which restricts the evaluation to individual caselges.

On the other hand, while emulation is fast and dgeh reproducible objective
evaluation measure, it completalynores human factors. It produces only theoretical
results which have to be carefully interpreted.phrticular, contradictory experiments
have clearly shown there is not a direct corretabetween objective metrics and speed
rate improvement [Anson et al. 2006; Koester angine 1994; Koester et Simpson
2000].

Several objective metrics have been proposed tesasthe ability of a prediction
component to speed up a communication aid. Sontieeaf are directly related to human
testing. Soukoreff and MacKenzie [2003] use fortanse aKSPC (KeyStroke Per
Characte) measure which is a good indicator for the rateayping errors. Likewise,
measures of communication speed [Koester and Let®®@4] are strongly related to the
motor and cognitive abilities of the recruited sefor assessment by emulation, text
predictors are traditionally evaluated by an oljectmeasure callekeystroke Saving
Rate(ksr) which is defined as follows:

ksr = (l— t"J (100 9

a

with k, k, being the number of keystrokes needed on the idpute when typing a
message withk() and without predictionk( = number of characters in the text that has
been entered) = length of the prediction list).

Other metrics can be found in the literature. Thiterate (HR) is the percentage of
times that the intended word appears in the priedidist. It gives a clear idea of how
much the system is able to aid the user. Some iexpets have; however, shown that hit
rates are correlated to keystroke saving rateshfFaad Hirst, 2003]. The perplexity
measure, which is frequently used to assess statisinguage models, proved to be less
accurate in this context, particularly when new @gowere added during the prediction
process [Wandmacher and Antoine, 2006]. Thus, wee ldecided to adopt thiesr
measure to assess our system.

It is obvious that this evaluation measure direatyrelates with the size of the
prediction list. The more words presented, the ebethe ksr will be, however the

cognitive load on the user rises as well. The follay figure shows th&sr for prediction



list sizes from 1 to 20, tested on a French newepeprpus ifews-ft s. section 6.2). The

results are based on the combined model, as deddritsection 6.7.
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Fig. 10. Keystroke savings compared to predictiondt size

As the curve in Figure 9 clearly shows, the depeaogédetweerksr and list size is
non-linear: whereas we gain more than 13% fi@m to ksr,, (kst,=44.4%;ksr,=57.9%)
the gain betweeksr, andksr,  is only 3.6% Ksr,;=61.5%). For this reason, arbetween
3 and 7 seems a reasonable trade-off between seatm@nd cognitive load. This result
is coherent with prior works showing that typingeg rates reach a plateau at a word list
length of about five words [Swiffin, Arnott, Newell987]. In the following section,
keystroke savings are estimated with a word preictist of 5 items Ksr). This
corresponds to the list size that is used in pradti the 8YLLE system.

As in [Trost et al. 2005] and [Trnka et al. 200iFHe keystroke saving rates presented
in the paper are based on the assumption thatdditomal keystroke is required to jump
to the word selection list and that a space israatwally inserted afterwards. By default,
the computation of th&sr supposes that the system follows the strategyyofiic
filtering, presented in section 4: words, which éalready occurred in the list and that
were not selected by the user, will not reappeiar &ifie next character has been inserted.
This has a slight but stable effect on kse Without filtering of already shown words we

measured &st, of 56.9% (-1%) for the above corpuse(vs-f).

6.2 Ecological evaluation: corpora from multiple language registers
SibyWordhas been assessed for each language (French, iGantd&nglish) separately.
To bring our evaluation closer to real usage, weehezonducted experiments on various

corpora that correspond to different language tegisand topics of communication



. Nbr of
Register Corpus (name) words
FromL’Humanité(news-f) 58,457

News FromSuddeutsche Zeiturfgews-dg 56,031
FromThe Guardiannews-ei 53,070

Germinal by Emile Zola Ift-fr) 50,251

Literature | Effi Briest by Theodor Fontandittde) 54,844
The Picture of Dorian Grayby Oscar Wildelit-en) 53,640
Transcribed OTG (speech-f 15,435
speech German Verbmobil(speech-de 20,729
English Verbmobi(speech-en 20,788

French personal e-mailertail-fr) 44,946

E-mail | German personal e-mailsriail-dg 15,774
Mails from theEnrone-mail datasét(email-er) 22,151

Table VI. Evaluation corpora used (w. number of wods)

For each test set we then calculated the keyssaking rate based on a 5-word list
(ksr,) for the following settings:

= 4-gram LM only Baseline modgl

= 4-gram interpolated with Bynamic User Mode(DUM).

= 4-gram + LSA model

= For German only: 4-gram + partial selection (PS)

= 4-gram + DUM + LSA

6.3 Baseline prediction model

Table VII presents the performances of the basetielel for the different corpora.
Whatever the language considered, the model wasetteon news corpora (Table I,
section 4). In this control situation (same registe training corpus), the resultikgr,
varies from 51.6% (German) to 57.8% (French). Tdveek ksr,observed for German can
be explained by its more complex morphology, asl wslthe presence of compound
words, which are not predictable by the base m¢delection 5.3).

® OTG the corpus collects the transcription of spontasespoken dialogs between
French tourist agents and customers at the towffioe of Grenoble, France (Nicolas et
al., 2002).

*Verbmobilcorpus: http://www.phonetik.uni- muenchen.de/
Forschung/Verbmobil/VerbTRL.html

® Enrone-mail dataset: http://www.cs.cmu.edu/~enron/



Corpus French | German English
News 57.8% 51.6% 55.5%
Literature 46.0% 44.9% 49.8%
Transcribed | g 394 49.1% 48.5%
speech
E-mail 48.6% 48.0% 49.4%

Table VII. Performances (ksr;) of the baseline model (4-gram) on
different communication situations

As already mentioned, language models are depemwdettiteir training resources; for
this reason it is not astonishing to observe tiyhdst savings for the corpora which are
most similar to the training data (newspaper). ©oapof other registers however yield
significantly worse results; the literature cormmws a performance loss of more than
20%. In a real usage situation, even worse resalts be expected with this baseline
model. Two causes can be invoked to explain thigatkation:

= Out-Of-Vocabulary (OOV) words cannot be predictgdthe system. (Table
VIII presents the percentage of OOV in the Fremsh torpora.)

= Even though all text data can be considered gramatatevery language
register exhibits its own particular way of senteriormation and diction. In
this respect, newspaper data differs very much fitarature of the 19century
and even more from conversational speech, wheretitieps and phrasal
disruptions are very common.

News | Literature|Speech E-mail
% of OOV | 2.2 % 2.4% 1.39% 5.19

Table VIII. Percentage of out-of-vocabulary words QOV) in the French test corpora

6.4 Dynamic User Model

Table IX displays the overall results of the congtinmodel and the gains with
respect to the baseline results. In the begindiedUM was always empty. As Table IX
shows, we get an important increaseksf for all test corpora. We even get a slight
improvement for the test corpus that belongs todhme register (newspaper) as the
training data. For the other registers we obtaingaf up to 9.4%. Whichever test corpus
considered, the keystroke saving rate remains higffaa 50%. Interestingly, the speech

corpora get the highest gains for all three langsag



Corpus French German English
Newspaper 58.5% 54.6% 56.3%
news(fr,de,er (+0.7%) (+3.0%) (+0.8%)
Literature 50.6% 50.0% 53.0%
lit- (fr,de,er) (+4.6%) (+5.1%) (+3.2%)
Transcr. speech 57.7% 57.5% 56.9%
speech(ir,de,er) (+9.4%) (+8.4%) (+8.4%
E-mail 53.0% 51.6% 54.1%
emaik(fr,deen (+4.4% (+3.6%) (+4.7%

Table IX. Performances (ksg) of the dynamic user model.
Improvement over the baseline

This is probably due to the strong difference &f ldnguage style and also to the high
number of repetitive phrases (e.gSe€e you latér “ | don’t know), which can be
predicted very easily, once they have been intedrahe time.

To assess the temporal flexibility of the DUM, weaaobserved thksr development
during the prediction of the test data. As thereay curves in Figure 10 show (fbi-fr
andemail-fr), the DUM-based model already performs 2% bettantthe baseline after
only 2,000 words, and it reaches a plateau of +5ab8r approximately 20,000 words.
This implies that the training time needed to eitploe advantages of the DUM-based

model is not very long (3 to 6 hours of typing &oskilled user).

—+—email-fr
— lit-fr

ksrs

Number of words

Fig. 11. Influence of the Dynamic User Model: ksyincrease
according to the amount of training data

6.5 Semantic adaptation
We also evaluated our LSA-based semantic compoagainst our 4-gram baseline

model. Table X shows the gains achieved with a déoetb model, using confidence-



weighted geometric interpolation (as describeddctisn 5.2). The semantic adaptation
that is achieved by the LSA model leads to a legsortant increase dfsr (+1.0% to
+1.7%) than the user model. However, we can coechhat the LSA-based model is
beneficial for all test corpora and languages, thiedgain is on average five times higher
than that of a cache model [cf. Wandmacher and iAet®006]. Moreover, it performs
far better than the trigger model, as used by Tebsat. [2005] (+0.3% ifksr,) or the topic
model by Trnka [2006] (+0.4% with respect to arig baseline).

Corpus French German English
Newspaper 58.9% 52.6% 56.7%
news(fr,de,en (+1.1%) (+1.0%) (+1.2%)
Literature 47.7% 46.1% 51.0 %
lit- (fr,de,en (+1.7%) (+1.2%) (+1.2%)
Transcr. speech 49.5% 50.4% 49.5%
speechdr,de,en (+1.2%) (+1.3% (+1.0%
E-mail 50.2% 49.1% 50.7%
email(fr,de,ern (+1.6% (+1.1%) (+1.3%

Table X. Performances (ksg) of the LSA-based model.
Improvement with the baseline model

An aspect that the results here do not show isstligective improvement for the
users. Since the LSA-based model is able to seoadigtirelate the words in the
prediction list to the current context, our LSA-bdsmodel also serves as a sort of
thesaurus and helps the user to find the apprepnatd. This cognitive support can turn

out to be much more important than a gaiksn

6.6 Partial selection (Compound treatment)

The emulation of the partial selection method isameasy to achieve as that of the other
methods. It presumes that the user applies an apsaiection strategy which in practice
is more difficult than simply scanning a predictilist to see if a word matches. Saving
rates can even decrease when simply every word angeatched, because it then takes
two more selection steps to choose the followirmgneint (1 back step + 1 selection). The
results in Table Xl display the optimal gains, RS was only applied when it could
decrease the number of keystrokes to be typedeSiadial selection is mostly useful in
handling the insertion of German compound words, omty display the results for
German here. Interestingly, partial selection alsems to have a slightly beneficial effect

for French and English corpora (+0.1 to +0.3%).



For the partial selection method we can observblestgains of 0.8 to 1.5% for all
corpora. This is somewhat less than the resultéro$t et al. [2005] who report higher
gains of app. 3% for an equivalent strategy, hilltssignificant improvement. We can,
therefore, conclude that, even though this apprascrery simple, it has a beneficial
effect on the problem of compound words, and ifgers significantly better than the
complex model proposed by Baroni et al. [2002] wdyoort an improvement of +0.3%.

Corpus PS off PS on
news-de 51.6% 53.1%+1.5%)
lit-de 44.9% 46.1%+1.2%)
speech-de 49.1% 50.0%+0.9%)
email-de 48.0% 48.8% (0.8%)

Table XI. Performances (ksg) of the Partial Selection (PS) strategy.
Improvement with the baseline model

6.7 Combining strategies

So far we have presented the results for each atitaptmethod separately, and we have
observed significant and mostly stable gains fbofathem. However, this does not imply
that these strategies work well together. Therefitre following table shows the overall

results with all strategies combined.

Corpus Al Of.f .A” on Gain
(Baseline) (SibyWord)

news-fr 57.8% 59.4% +1.6
lit-fr 46.0% 52.2% +6.2
speech-fr 48.3% 57.9% +9.6
email-fr 48.6% 53.8% +5.2
news-de 51.6% 56.9% +5.3
lit-de 44.9% 51.8% +6.9
speech-de 49.1% 58.4% +9.3
email-de 48.0% 53.1% +5.1
news-en 55.5% 57.6% +2.1
lit-en 49.8% 54.4% +4.6
speech-en 48.5% 57.7% +9.2
email-en 49.4% 54.8% +5.4

Table XII. Performances (ksrs) for all corpora and languages tested,
with and without all adaptation strategies



As the results in Table Xll indicate, the gainsnfrthe different adaptation methods
are nearly additive, and they remarkably improwedhierall results. With the application
of all adaptation methods the keystroke savingsamrerabove 50% for all languages and
registers. For the speech corpora especially, itapbgains of more than 9% can be seen,;
however, all the other language registers alsoftidrem the adaptation.

The smallest gains are observed for the newspappoi@; this was expected due to the
high similarity with the training data. In genenale can conclude that our adaptive word
predictor considerably enhances keystroke savingh vespect to an already well
performing 4-gram baseline, and it is able to redtite training dependency innate in
statistical NLP approaches. It has theoreticallyvpn high performance for a variety of
rather different communication situations and laggi styles. The practical perspective
should now be looked into.

7. USER ASSESSMENT

The SBYLLE system benefits from the experience of seven yeadaily use in the
rehabilitation center of Kerpape (Brittany, FrancH)is center receives adult patients and
children requiring reeducation or rehabilitationmecavithin the framework of a full-time
hospital, a day hospital or an outpatient servigde multi-disciplinary team of
professionals (physio- and ergotherapists, spebehapists, orthoptists, teachers and
technicians) aims to optimize the independence @t a6 the social and professional
reinsertion of its patients.

When a communication-impaired patient arrives ajppe, she or he meets all of the
interacting staff, who try to determine her or sipecific needs by carrying out a number
of experiments. The speech therapists analyzeatienp's linguistic abilities and thereby
find out which kind of AAC will be most suitable.(g. use of an iconic, phonetic or
alphabetic keyboard). The ergotherapists deterthiméunctional and motor capacities of
the patient in order to define the most appropriapeit device as well as the selection
modes of the AAC system. The orthoptists then amathe patient’s visual abilities to
ensure that all elements of the interface are lgigarceptible. When the basic parameter
settings are found, the technical staff then camég the AAC system accordingly; this
step is of course performed in close collaboratwith the patient.

Such an adaptation process can take a considemadglent of time; especially in the case
of visual disability it involves several months iofense work with the patient until the
optimal configuration can be found; yet accordiaghe practitioners at Kerpape, it will
eventually be found with thelgrLLE system, due to its far-reaching configurability. (c

section 2.3).



Its successive versions have been used by moretilearty patients Some of them are
adults, but the majority are children and adolescémm the school integrated in the
center (s. Table XllI presenting the users from2@02007).

User | Age Disease Clinical pattern

Q 19 cerebral palsy dystonic quadriplegia, anarthria

dyskinetic quadriplegia, dysarthria +

H 15 encephalitis . . .
visual impairment

P 15 cerebral palsy dystonic quadriplegia, anarthria
M 15 cerebral palsy spastic quadriplegia + amblyopia
E 14 cerebral palsy dystonic quadriplegia, anarthria
G 19 cerebral palsy dystonic quadriplegia, anarthria
S 23 cerebral palsy dystonic quadriplegia, anarthria
Y 21 cerebral palsy dystonic quadriplegia, anarthria

Table XIlI. Clinical description of SBYLLE users in the Kerpape rehabilitation center
during the years 2005-2007

The system was highly appreciated by most (senty two of them, who are visually
strongly impaired, felt uncomfortable with the dymia rearrangement of the keyboard.
But even in these severe cases the practitionefs configure the system in a way (i.e.
by selecting a static keyboard layout, appropréatiers and font size, and by optimizing
the placement of the keypads) that would beneditigers.

This is the particular strength ofBSLLE. The linguistic facilities of the system are
able to evolve with the user’s capacities and ngadd not the other way around, as is
often the case). A user can start with a very smgtlatic configuration and then
successively use more advanced features in ordgreed up his/her communication rate
without changing the interface. And indeed the heas of the Kerpape school could
observe a significant acceleration of the text riige process after their students had
started to use ISYLLE. They also observed that the children accept lowgarking
sessions. This indicates that the useiBY S E implies less physical fatigue, compared to
the AAC systems that were previously used in th&tere The reduction of the physical
fatigue of the users is certainly as importantrasimprovement of the communication
speed [Berard and Neimeijer, 2004].

® Note that the results reported in the following based on earlier versions o B.LE,
incorporating a non-adaptive word predictor. Theriface properties however (dynamic
key selection, configurability etc.) were alreadytpf the initial system.

" This statement results from years of work withukers, we did however not yet
perform a standardized user inquiry.



Finally, we have also noticed a significant deceeasorthographic and grammatical
errors when the patients are using the system. pesable result has already been
observed with users of other AAC systems [Morrigletl992 ; Carlberger et al., 1997].

This observation applies in particular when the hse additional language impairments.

T e -

Fig. 12.SiBYLLE (v. 1.5.2) used by an athetosic child from the
integrated school of the Kerpape rehabilitation ceter

Despite these encouraging user experiences, arldigju observation is that,
frequently, some users do not select the intendwed wven though it is clearly present in
the prediction list. In an experiment conductedhwite commercial DIALO system,
Biard et al [2006] observed that their patients selected @)B00 word hypotheses
during the composition of text summing up to 80,0&tPers (app. 16,500 words). Our
discussions with the users and the practitionand te show that this situation, which
obviously limits the keystroke savings and likewike communication speed, is due to
an already quoted cognitive problem [Koester, Leyib994; Horstmann, Levine 1991]:
the users have difficulties writing a message a&adling the list simultaneously, due to an
increase of the cognitive load.

A possible solution to this problem could be to lempent direct completion like in
the VITIPI system [Boissiére and Dours, 2001]: éast of presenting a list of several
word hypotheses on a specific sub key-pad, one mapose the most probable
termination of the current word immediately aftbe tlatest typed letter. However, this
type of immediate display may not be sufficient eglo to limit the conflict between
input (reading the prediction) and output (writithg message) activities.

Another solution is to directly include word pretitiois in the letter keypad: the first
keys will display these words and the following stikee predicted letters. Then, the user
will only have to focus his/her attention on thdeston frame. The scanning of these

additional keys obviously increases the time nedde@ach a letter. Nevertheless, some



preliminary experiments suggest that this strategyld be useful when only one or two
suggestions are included.

Moreover, one must consider that this selectionen@ahd direct completion as well)
requires a single keystroke, while two succesdiepssare needed to jump to the word list
and to select a word in the “standard” strateffyshould compensate for the fact that
fewer hypotheses are proposed to the user. Buedsawe already pointed out, due to the
differing physical preconditions, each user has dehis own preferences and needs;
therefore there is no single optimal solution foe tinterface of an AAC device; only
offering a multitude of possible configurations caspond to the various demands of
AAC users. For this reason, we are currently imgeting the two selection modes
mentioned above: direct completion and word sadadiiom the letter keypad.

8. CONCLUSION AND PERSPECTIVES

We presented the user interface, as well as ther lehd word prediction modules of our
AAC system 8YLLE, which has been in use since 2001. While earlkgsions of the
system already comprised the interface and lett@digtion components, recent
development concentrated on improving the word ipted Therefore, the new features
of this module were the main focus of the preseskw We have described in detail how
the word predictor adapts to the user’s languagle and to the current semantic context,
and we have presented the results of an extendddagion (by emulation) of each of the
adaptation methods. In the last part, we also tegofirst results from a real-use
evaluation including users from the Kerpape reliakibn center.

This user-centered evaluation must now be extendedstill need more information
about real uses of AAC systems with patients pitasgra large variety of clinical
characteristics. In particular, a significant pafrtmotion and speech disabled users also
have severe cognitive impairments. This implies thevelopment of sophisticated
evaluation measures that are able to considenthieiduality of each user while assuring
transparency and reproducibility.

We are thus involved in the ESAC_IMC proje@&ofidation Motricg, the aim of
which is to collect and analyze a large corpuseal-use sessions on three AAC systems
for French. The participants (Kerpape rehabilitaticenter and three research
laboratories: LI, IRIT and VALORIA) have definedcammon XML interchange format
for the log files that are being recorded during évaluation campaign. These log files
keep track of:

= all actions of the user (keystrokes, selected if¢ime stamps),

= all replies/actions of the system, contents ofptreiction lists etc.



Furthermore, we keep the clinical description of e recorded users. This
information will be very useful to characterize Iraeeds for AAC according to different
kinds of disability. The recordings of these lodedi are now in progress in the

rehabilitation center of Kerpape.
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