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Abstract. Supporting interactive database exploration (IDE) is a prob-
lem that attracts lots of attention these days. Exploratory OLAP (OLAP:
On-Line Analytical Processing) is an important use case where tools sup-
port navigation and analysis of the most interesting data, using the best
possible perspectives. While many approaches were proposed (like query
recommendation, reuse, steering, personalization or unexpected data rec-
ommendation), a recurrent problem is how to assess the effectiveness of
an exploratory OLAP approach. In this paper we propose a benchmark
framework to do so, that relies on an extensible set of user-centric met-
rics that relate to the main dimensions of exploratory analysis. Namely,
we describe how to model and simulate user activity, how to formal-
ize our metrics and how to build exploratory tasks to properly evaluate
IDE systems under test (SUT). To the best of our knowledge, this is the
first proposal of such a benchmark. Experiments are two-fold: first we
evaluate the benchmark protocol and metrics based on synthetic SUTs
whose behavior is well known. Second, we concentrate on two different
recent SUTs from IDE literature that are evaluated and compared with
our benchmark. Finally, potential extensions to produce an industry-
strength benchmark are discussed in the conclusion.

1 Introduction

While there exist a set of benchmarks recognized by the database community
as relevant for evaluation and comparison of performance of database systems,
such as the benchmarks from TPC organization, there is yet no commonly agreed
upon benchmark for evaluating to what extent database systems help the user
during data exploration. Roughly speaking, TPC benchmarks assess data re-
trieval, and not data exploration. However, supporting exploration of databases
is of prime importance, especially in a context of big, distributed and hetero-
geneous data, as shown in a recent survey of the topic [17]. Both researchers
and companies that supply data analysis tools are increasingly focused on mech-
anisms for improving user experience, in particular aids for effective data ex-
ploration. This is partly because better data exploration experiences will give a



competitive edge to the companies selling those tools. As researchers and com-
panies implement, test and tune alike their Interactive Data Exploration (IDE)
solutions, a major issue they face is how to assess and compare solutions, im-
provements and alternatives.

In this work we focus on the context of OLAP analysis of data, as an im-
portant use case of IDE. OLAP is defined as the process of analyzing multidi-
mensional datasets (cubes), online, interactively, summarizing key performance
indicators (called measures) from different perspectives or axes of analysis (called
dimensions). For example, consider sales of products over time at different shops.
Dimensions include product, time and shop, and measures include the amount
of sales. Dimension hierarchies are another important concept as they allow an-
alyzing data at different levels of detail. For instance, we might analyze sales
by product, brand or type of product, taking advantage of a product hierarchy,
study weekly, montly and yearly evolution, according to a time hierarchy, and
compare shops, locations, and zones, depending on the way shops are hierarchi-
cally organized. Most frequent OLAP queries consist of aggregating measures at
specific hierarchical levels, and then comparing measure values, analyzing the
impact of specific dimensions, and explaining, somehow, the visualized values.
Both beginner and proficient users need to navigate the cube in order to un-
derstand the data and to accomplish their analysis tasks. We call this process,
an interactive data exploration (IDE) approach. All kinds of data navigation
aids, such as query reuse, query steering or query personalization, can be used
to suggest next course of actions to users during their exploration.

In order to motivate our work, let’s now consider the following toy example:
a user navigating OLAP sales cube faces an unexpected difference between sales
in year 2014 and year 2015 for a product P in France. The user will then explore
the surrounding region of the cube by mean of OLAP operators such as roll-up
(at the Europe level for example), drill-down (at the month level for example)
and slices (for other products) to find evidences that may explain and corrob-
orate the first fact. The use might even get some support from a system that
automatically proposes next moves in the analysis [2,13]. We consider that the
surrounding region of the first interesting fact corresponds to a neighborhood
that has to be covered to ensure the exploration task success. If one wants to
evaluate this particular data exploration, it is then possible to measure several
metrics such as the number of queries that the user needed to cover this neigh-
borhood, the ratio of this area that has been finally discovered, the ratio of the
rest of the cube that the user had to visit to reach this result etc. So far, the
assessment of data exploration through quality measures has been overlooked
by the database community, but we can benefit from experience in the fields of
information retrieval and exploratory search [34], which are particularly driven
by the quality of the user’s experience and metrics for measuring it.

In this paper we propose a benchmark to compare approaches for aiding
in exploratory OLAP. The main objective of the benchmark is to provide a
framework where a System Under Test (SUT) executes and produces suggestions
for next data analysis moves, and those suggestions are evaluated according to



a set of metrics that measure the quality of exploration. In this way, a developer
can easily test and evaluate alternatives. The benchmark can be used with any
SUT, to evaluate any strategy that one may design. It reports objective measures
for a set of metrics that characterize the degree to which the SUT fulfills certain
objectives.

The benchmark was designed with a set of guiding principles in mind. It has
to be easy to use by anyone, considering that a developer or researcher work-
ing in an OLAP exploration tool or algorithm, should be able to quickly plug
his approach to the benchmark and use it, without requiring complex develop-
ment or setting up of schema, dataset or OLAP exploration characteristics. The
benchmark should also return objective evaluation metric results that are inde-
pendent of the approach being tested. This means that both the mechanisms of
the benchmark and the evaluation metrics must be agnostic of the IDE approach.
We fulfill this objective by making sure that the user and evaluation models of
the benchmark are open and published as part of the benchmark specification,
not based on some specific proposed exploratory OLAP approach, and by defin-
ing metrics that classify the quality of exploratory OLAP using state-of-the-art
quality-of-exploration metrics.

So far, the assessment of data exploration through quality measures has been
overlooked by the database community, but we can benefit from experience in
the fields of information retrieval and exploratory search [34], which are partic-
ularly driven by the quality of the user’s experience and metrics for measuring
it. We were able to adapt metrics that include Engagement and Enjoyment,
Information Novelty, Task Success, Task Time and Learning and Cog-
nition to our context. For those identified metrics we defined how they should
be implemented and evaluated in exploratory OLAP.

We conduct two kind of experiments in order to validate the benchmark
and to compare actual exploratory OLAP approaches. For validation, we create
three ”synthetic” SUTs with expected outcomes: a baseline SUT which returns
purely random next move suggestions (called "random”), and a naive SUT,
which changes just one attribute in the query (called "naive”). The comparison
of results between random and naive helps validate that the benchmark is able
to rank according to the quality of exploration.

Concerning evaluation of existing exploratory OLAP approaches, we analyze
two state-of-the-art interactive data exploration approaches, Cinecubes [13], and
falseto [1], that are two different approaches that were never compared before.
The ability to compare and to reach conclusions about these approaches using
the benchmark shows the importance of the benchmark. With the benchmark,
we can finally characterize and compare the approaches in an independent way.

The paper is organized as follows. Section 2 discusses related work. Section
3 explains how interactive explorations can be scored and defines the bench-
mark metrics. Section 4 presents the benchmark itself. First it describes how the
SUT is interfaced with the benchmark, then it discusses how the benchmark is
initialized with data and sessions, and how it simulates the user accomplishing
tasks and finding interesting answers to those tasks. Experimental results are



Input

Category DB instance Query log Current query Output
[6] Automatic exploration v v Tuples
2] Automatic exploration v v Sequence of queries
[12]  Automatic exploration v v v Queries
[4] Automatic exploration v v Queries
[13]  Visual optimization v v Queries
Automatic exploration result highlighting
[14]  Visual optimization v Query
[30]  Data prefetching v v v Tuples
[29,31] Data prefetching v v Tuples
[18]  Data prefetching v v Sequence of queries
[28]  Data prefetching v v Queries

Table 1. Interactive cube exploration techniques signatures

discussed in section 5, including both validation of the benchmark and analy-
sis of existing exploratory OLAP approaches. Finally, section 6 concludes the
paper with considerations on potential extensions to produce industry-strength
benchmark.

2 Related Work

The variety of database exploration approaches Many approaches have recently
been developed to support interactive database exploration (IDE), as illustrated
by a recent survey of the topic [17]. Techniques range from Visual optimization
(like query result reduction [5]), automatic exploration (like query recommen-
dation [9]), assisted query formulation (like data space segmentation [32]), data
prefetching (like result diversification [19]) and query approximation [16]. The
core of most of these approaches consists of a function that, given the database
instance and users’ history with the database (i.e., past and current queries),
computes new relevant queries, tuples or visualizations that are meant to sup-
port user exploration.

Given the exploratory nature of OLAP analysis of multidimensional data
(see e.g., [30,18]), many exploration techniques have been specifically developed
in the context of interactive OLAP exploration of data cubes. Table 1 lists these
exploration approaches, indicating their categories (in terms of those proposed in
[17]), and report their inputs and outputs. For instance, the PROMISE prefetch-
ing approach [28], that predicts a query based on a Markov Model constructed
out of the server’s log, corresponds to a function with signature (L, {(q)) — (¢},
where L is the query log, ¢ is the current user query and ¢’ is the predicted

query.

Measuring the quality of an exploration Measuring the quality of exploration has
attracted a lot of attention in Information Retrieval, in particular in the field



of Exploratory Search® [34] that can be defined as a search paradigm centered
on the user and the evolution of their knowledge. It is particularly driven by
the quality of the user’s experience, and metrics for measuring it have been
categorized as follows. Engagement and Enjoyment measures the ”degree
to which users are engaged and are experiencing positive emotions”. It includes
”the amount of interaction required during exploration”, the ”extent to which
the user is focused on the task”. Task Success assesses "whether the user
reaches a particular target” and finds a ”sufficient amount of information and
details” along the way. Information Novelty measures the ”amount of new
information encountered”. Task Time measures the ”time spent to reach a state
of task completeness”. Learning and Cognition measures the ”attainment of
learning outcomes”, ”the amount of the topic space covered” and ”the number
of insights acquired”. While these categories have been proposed in the context
of web search, they make perfect sense for interactive database exploration, and
we next focus on measures that have been proposed in the literature in these
categories.

User engagement measures are popular in web search to measure how a user
is engaged in using a website or search engine. Many implicit measures have
been proposed [23] to track online behavior. These measures are classically cate-
gorized in activity (how a website is used), loyalty (return of users to a website)
and popularity (how much a website is used). While loyalty and popularity essen-
tially make sense for relative comparison of websites, activity enables measuring
engagement for a particular website independently of other websites. The most
commonly used activity metrics include number of queries per session, number
of clicks, number of clicks per query, dwell (presence) time (see e.g., [10,33]).

Task success is well studied in information retrieval, with even conferences
devoted specifically to this, like the TREC conference*. Task success is tradi-
tionally measured with precision/recall-based measures, which supposes that the
target of the task is known. In this case, roughly speaking, recall measures how
complete the answer to a query is, while precision measures how noisy the answer
to a query is.

Many works have been interested with measuring information novelty in re-
lational databases. For instance, in [11], the authors propose to describe the data
space covered by a session with a vector of the tuples accessed by the queries
of the session. In [24], the authors propose the notion of access area to capture
the portion of the dataset a user is interested in. In [19], the authors use a sim-
ilar notion to propose query result diversification. In data cubes exploration,
Sarawagi [30] assimilates novelty with the most informative constraints so that
the expected distribution of a cube’s cell values - based on a maximum entropy
principle - is closer to the actual observed values. Here, a constraint is defined at
an aggregate level of the observed cells and is expressed as a sum over the values
of a subset of the observed cells. It is then expected that bringing more con-
straints modifies the expected distribution of values and thus allows to reduce

3 http://wp.sigmod.org/?p=1183
* http:/ /trec.nist.gov/



the divergence between the observation and the expectation. The constraints
that best reduce this divergence is declared to be the most informative.

Measuring task time may seem straightforward, but one needs to carefully
define what is timed and how to report it. Performance related metrics like query
per hour can be adapted from TPC benchmarks to this end.

Finally, measuring learning and cognition has attracted lots of attention in
learner models [8]. Learner models are central components of intelligent tutoring
systems, that infer a student’s latent skills and knowledge from observed data.
A very influential and widespread accepted model is the Knowledge Tracing
model [7]. Knowledge tracing is a Bayesian network allowing to measure the
probability that a skill is mastered when resolving a problem (opportunity to use
the skill). The model relies on four parameters, usually experimentally tuned:
P(Ly): the probability the skill is already mastered before the first problem,
P(T): the probability the skill will be learned at each opportunity to use the
skill (transition from not mastered to mastered), g: the probability the resolution
is correct if the skill is not mastered (guess), s: the probability a mistake is made
if the skill is mastered (slip). The probability that the skill L at opportunity n
is mastered is the probability the skill is learned at step n — 1 or not learned at
step n — 1 but learned at this step n. It can be computed as: P(L,|X,, = x,) =
P(Lp—1|Xn =2n) + (1 — P(Lp—1|Xpn = x,)) x P(T) where:

L P(Ly_1)(1—s
P(Lo1[Xn =1) = 5,30 ST A

_ _ P(Lnf )5
P(Ln-11Xn = 0) = 5 350 P(L, )0 9)

X, =1 (resp. 0) means problem n has been correctly (resp. not correctly)
resolved.

Current benchmarks for decision support, big data and analytic workloads TPC
proposes a number of popular benchmarks and metrics for assessing the per-
formance of database systems, covering time, performance, price, availability
or energy consumption (see Table 2). However, while TPC acknowledges the
importance of the explorative nature of decision support queries (see e.g., the
OLAP interactive queries in the TPC-DS benchmark), none of the existing TPC
metrics are appropriate for measuring database exploration support in the sense
of the categories proposed in Exploratory Search. A recent benchmark targets
analytical workloads [22], but it too overlooks assessing the quality of interactive
data exploration by proposing metrics covering only query response time, tuning
overhead, data arrival to query time, storage size and monetary cost.

OLAP-specific literature for the benchmark implementation Interestingly, the
literature on OLAP already provides the building blocks for benchmarking cube
exploration. OLAP has been the subject of specific benchmarks, like the TPC-
H-based Star Schema Benchmark (SSB) [25]. SSB models a realistic use case of
sales analysis, for which realistic instances with skewed data can be produced
with the PDGF data generator [26]. Realistic OLAP workloads can be gener-
ated with the CubeLoad session generator [27]. CubeLoad takes as input a cube
schema and creates the desired number of sessions according to templates mod-



Metrics TPC-H TPC-DS TPC-DI TPCx-HS TPCx-BB
Query per hour
Price/performance
Availability date
Power /performance
Power

Throughput

Load time

Power test elapsed time
Table 2. Metrics of relevant TPC benchmarks
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eling various user exploration patterns: users with limited OLAP skills pursuing
a specific analysis goal, more advanced users navigating with a sequence of slice
and drill operations, users tracking unexpected results with explorative sessions.
OLAP literature also provides techniques for characterizing analytic behaviors
[28,4]. In these works, the user’s behavior is defined as a Markov model, whose
states are built from the past queries of the user, and the transitions between
states are weighted by the probability of observing a query after another in
the user’s query log. Finally, OLAP literature also provides characterizations
of interesting data in the multidimensional space. Discovery-driven analysis of
data cube [29,30,31,6] aimed at measuring potentially surprising data, know-
ing already evaluated queries. These work characterize surprising data as being
groups of tuples that are connected (usually one OLAP operation apart), and
that, taken altogether, appear to be meaningful (usually unexpected, in the sense
of e.g., information theoretic measures).

3 Evaluating an exploration

This section precisely describes how interactive explorations can be scored, by
implementing the metrics related to user experience identified in the previous
section. We first start with presenting formally the concepts needed to define an
exploration in an OLAP context.

3.1 Exploration in an OLAP context

Our benchmark incorporates the explorative and interactive nature of IDE by
considering user sessions as first class citizens. We define a session as a sequence
of queries over a datawarehouse and a log as a set of sessions. In what follows,
a log can be associated to one particular user profile (representing this user’s
activity) or can represent the overall activity (being the union of all user logs).

Definition 1 (Session and log). A session s = {q1,...,qk) of length |s| = k
is a sequence of k OLAP queries over a multidimensional schema. A log L =
{s1,...,8p} is a finite set of sessions.
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Fig. 1. Multidimensional schema used in the examples

The OLAP queries we consider are dimensional aggregate queries over a data
cube [15]. To keep the formalism simple, we consider cubes under a ROLAP per-
spective, described by a star schema [20]. We consider that a dimension consists
of one hierarchy, and we consider simple hierarchies without branches, i.e., con-
sisting of chains of levels. Formally, a cube schema consists of i) n hierarchies,
each hierarchy being a set Lev(h;) = {Lo, ..., Lq} of levels together with a roll-
up total order =, of Lev(h;), ii) a measure attribute m, defined on a numerical
domain Dom(m). For a n-dimensional cube, a group-by set is an element of
Lev(hy) x ... x Lev(hy,).

More precisely, let £ be a set of attributes called levels, and for L € L, a
member is an element of Dom(L). A hierarchy h; is a set Lev(h;) = {Lo, ..., Laq}
of levels together with a roll-up total order >, of Lev(h;), which is such that,
for any L; and Ly in Lev(h;), Ly, =, L; if Rollup(L;) = Ly.

A multidimensional schema (or, briefly, a schema) is a triple M = (A, H, M)
where:

— A is a finite set of levels, whose domains are assumed pairwise disjoint,

— H ={hy,...,h,} is a finite set of hierarchies, (such that the Lev(h;)’s for
i €{l,...,n} define a partition of A);

— a finite set of measure attributes M, each defined on a numerical domain
Dom(m). In what follows we consider that M is a singleton.



Ezxample 1. Figure 1 displays the conceptual model for a multidimensional schema
that will be used in the following examples. This schema is based on that of the
SSB [25]. It is formalized by the triple SSB = (As, Hgs, Mg) where:

— Ag = {name®, city®, nation®, ...} is the set of all levels,

— H ={hcustoMER;---,horderDATE} i the set of hierarchies, such that, for
instance, nation® =n.ysromsr CHYS

— Mg = {SUMrevenue}, is the measure.

Definition 2 (OLAP query). A query q over a n-dimensional cube schema is
a pair (g, P) where g is a group by set and P = {p1,...,pn} is a set of Boolean
predicates, one for each hierarchy, whose conjunction defines the selection pred-
icate for q; they are of the form L =wv, or L € V', with L a level, v a value, V a
set of values. Conventionally, we note p; = T RUFE; if no selection on h; is made
in q (all values being selected);

Ezample 2. Consider schema SSB = (Ag, Hs, Ms). A query over this schema
is 1 = ((nation®,all?,year°?®, all?, all*), {TRUE®, TRUEP, year®® = 2014 or
2015, TRUE“, TRUE?*}). Tt asks for the yearly revenue by customer nations,
for year 2014 or 2015.

During their sessions, after each query is processed, users inspect the cube
cells retrieved by the query. A cell is an element of a cube that has a particular
coordinate (called reference) and measure value. The answer to a query ¢ =
(g, P), denoted answer(q), is the set of cells whose references are defined by ¢
and P.

Definition 3 (Cells). Let g = (Ly,..., L,) be a group by set. A reference
r={(my,...,my) is an element of Dom(g) = Dom(L1) X ...x Dom(L,). A cell
is a pair (r,v) where r is a reference and v a numerical value in Dom(m).

Ezxample 3. Here are two cells retrieved by query ¢;:
¢1 = ((FRANCE, all, 2015, all, all), 10000),
co = ((Ltaly, all, 2015, all, all), 20000).

Thanks to the the popular OLAP operations (roll-up, drill-down, slice-and-
dice), users navigate the cube by exploring cells neighborhood, by querying at
coarser granularity (roll-up), finer granularity (drill-down) or reaching siblings
in a hierarchy. This is formalized through relations between cells.

Let L; and Ly be two levels of a hierarchy h such that L; >5 L;, and let
m; € Dom(L;) and my, € Dom(Ly). We note my, =5 m; if m; is the ancestor of
my, in hierarchy h. >}, is a transitive relation whose transitive closure is denoted
=7 . We note my, =, m; if m; is the sibling of my, (they have the same direct
ancestor) in hierarchy h. Given two cells ¢ = (r,v) and ¢ = (r’,v’), we consider
the classical roll-up relation over cells defined by: ¢ =* ¢ if, for all hierarchies h;
it is either 7(i) = r'(i) or 7(¢) =, r'(i). The sibling relation between cells, noted
rz, is defined as ¢ & ¢’ if there exist a hierarchy h; for which r(i) a2, r’(4)) while
for all other hierarchies j # i it is r(j) = /(j).



Ezample 4. Consider cells ¢; = ((FRANCE, all, 2015, all, all), 10000},
co = ((Ttaly, all, 2015, all, all), 20000) from the previous example, and cell
co = ((Europe, all, 2015, all, all), 100000). It is ¢; = ¢p and ¢; = c3.

Definition 4 (Neighborhood of a cell). The rollup neighborhood of a cell ¢
is the set of all cells ¢’ such that ¢ =, c¢. The drilldown neighborhood of a cell
c is the set of all cells ¢ such that ¢ =, ¢’. The sibling neighborhood of a cell ¢
is the set of all cells ¢’ such that ¢ =~ ¢’. The OLAP neighborhood of a cell ¢ is
the union of its rollup meighborhood, its drilldown neighborhood and its sibling
neighborhood.

The neighborhood of a group of cells C, noted neighborhood(C) is the union
of the neighborhoods of each cell of the group. Intuitively, the neighborhood of
a group of cells defines a zone of the cube to be explored to analyze this group
of cell.

A user is represented by a log, i.e., the user’s past explorations. This allows
to characterize a user’s behavior by constructing a generative model, in the spirit
of what has been successfully applied in OLAP for data prefetching [28]. We now
give the formal definition the generative model representing a user’s behavior.

Definition 5 (Generative model). Let L be a set of sessions characterizing
a user. The generative model to represent this user’s behavior is a Markov model
of order one, i.e., a graph (S, P) where S is the set of queries of L and P :
S xS — [0,1] denotes the probability function for the state transition, computed
as P(q1,q2) = %W where q1 and qa are queries and sessions(s) gives

the number of sessions where the sequence s appears.

Definition 6 (User). Let S be a set of sessions and x be a percentage. A user
Uy is a tuple u, = (5199, 5%¢¢4 g) where S = s!°9 U s*eed |59 = z x |S| and g is
the generative model built from s'°9.

Finally, a task for a session consists of a set of cells to be analyzed by a user.
This set of cells is given under the form of a session, i.e., consists of the cells
retrieved by the queries of this session.

Definition 7 (Task). Let s be a session and u be a user. A task is a pair (s, u).

3.2 Metrics

We now present the metrics used to score an OLAP exploration. As explained
in Section 2, we adopt a categorization of the metrics proposed in the field of
Exploratory Search [34]. For each category, we propose a primary metric and a
secondary metric, with the idea that secondary metrics can be used to counter-
balance primary ones. Note that metrics of different categories have been defined
so that the overlapping between them is minimal: User engagement relates only
to the number of queries, novelty to cells, task success to cell neighborhood and
task time only to time. Only Learning and cognition overlaps with novelty task



success since it aims at measuring the skill of finding new and relevant informa-
tion. In what follows, let u = (s!°9, 5%¢¢? g) be a user, let t = (s, u) be a task
for user u and let s = {g1,...,qxr) be a session produced for the resolution of a
task .

User engagement and enjoyment We use two popular and simple activity metrics
used in web search: click depth as primary metric, to represent overall activity,
and number of clicks per query to represent how focused this activity is. Dwell
time, another popular activity metric, better fits in the Task time category.
In the web search context, a click correspond to following a hyperlink (i.e., an
HHTP query). In the context of the benchmark, a click corresponds to a new
query. The metrics are defined as follows:

— Query depth (QD, primary) = k, i.e., the number of queries in the
session, needed for resolving a task.

~ Focus (F, secondary) = Zez(llioers(0liges))

S such that for all g;,¢;11 € focus(q) the cells retrieved by ¢;11 are in one of
the neighborhood of the cells retrieved by g;. Intuitively, this is to measure
for a query ¢, the length of the chain of queries starting from ¢ that are
successively distant of only one OLAP operation.

, where focus(q) = {(gq,...,q') C

Information Novelty Capturing user interest in the data explored can be done
by measuring the access area [24]. In our context, this access area would be the
set of tuples (recorded in a fact table) contributing to form the cells of a query
result. As this area corresponds to tuples that are not actually presented as
answers to queries (since, being an OLAP context, these tuples are aggregated),
data of interest is better captured with view area, i.e., the cells presented in the
answers. This is defined by: given a set of query Q = {qu, ..., ¢}, the view area
of Q is va(Q) = U, g answer(q).

In a view area, not all data is interesting in the sense that it brings novel
knowledge.

We measure interestingness degree as a simple normalized entropy:

interest(C) = ( > pli) log<p<z'>>> / log(m) (1)

with |C| = m, C(i) is the i*" value of the set C and p(i) = % denotes the
estimated value of cell ¢ or its probability. =

The primary metric then quantifies the amount of interesting data found in
the session. The secondary metric measures the increase in view area compared
to the user’s log view area.

The metrics are defined as follows:

— Relevant new information (RNI, primary) = maz,cs(interest(va(q))).

— Increase in view area (IVA, secondary) = %,



Task Success Intuitively, a task consists of investigating what can be said of a
group of cells C' coming from a task (s, u). The extent to which a task is complete
consists of assessing how much of the neighborhood of this group of cells has
been retrieved during the resolution of the task. A simple way of measuring it is
with recall and precision. Recall is the primary metrics since consistently with
exploratory search, we consider OLAP navigation as a recall oriented activity
(what matters most is to minimize the number of false negative). The metrics
are defined as follows, for a group of cells C"

. _ |wva(s)Nneighborhood(C)|
— Recall (R’ prlmary) - |neighborhood(c)|
— Precision (P, secondary) = [va(s)Aneighborhood(C)|
’ lva(s)]|

Task Time Measuring task time is done by adapting metrics of existing TPC
benchmarks. We need to measure the time for the SUT to produce its output
and to process the queries needed for the resolution of the task. The primary
metric comes from the TPC-DS benchmark and measures the number of queries
per the time taken to resolve the task. The secondary metric simply measures
the task elapsed time. The metrics are defined as follows:

— Query per seconds (QpS, primary) = ﬁ, where T, is the overall
time for the SUT to produce its outputs and 7 is the overall query execution
time.

— Task elapsed time (TET, secondary) = T, + T., where T, is the overall
time for the SUT to produce its outputs and 7, is the overall query execution
time.

Learning and cognition We adapt the Knowledge Tracing model to our context.
Recall that knowledge tracing is a Bayesian network for measuring the proba-
bility that a skill is mastered when resolving a problem. In our context, the skill
assessed is the ability of finding interesting information in the neighborhood of
a group of cells C, neighborhood(C).

The problem to solve (the opportunity to test the skill) is the creation of a
new query, i.e., an opportunity to find more interesting cells in neighborhood(C).
X,, = 1 if the n*” query finds at least one more unknown cell of this neighborhood
where novelty increases for those cells compared to query n— 1. It is 0 otherwise.

The challenge is then to define the four parameters of the knowledge tracing.
In our context, it makes sense to set these parameters based on the generative
model since this model represents the past of the user. Intuitively, the skill
improves if the queries of the past sessions retrieve cells that are novel and in
the neighborhood of C. Parameters P(Lg), g and s are set as follows.

— P(Lg) is the average novelty of the cells in neighborhood(C) retrieved by
the generative model, weighted by the fraction of cells of this neighborhood
in the generative model.

— P(g) is the probability that novelty increases for the cells in neighborhood(C'),
from one query to the next one in the generative model.



— P(s) is the probability that novelty decreases for the cells in neighborhood(C'),
from one query to the next one in the generative model.

— P(T) is the proportion of queries of the sessions for which the novelty of cells
in the neighborhood of C increases compared to that of the previous query.

The primary metric is defined as in the classical knowledge tracing model,
by: Learning (L, primary) = P(L,|X, = z,) = P(Lp,-1|X, = z,) + (1 —
P(Ly1|X, = 2,)) x P(T) where: P(Ly,_1|X,, = 1) = 5r—rnt)d=s)

P(Los) (Ln-1)(A=5)+(1=P(Ln-1))g
and P(Ly1|Xn =0) = 55t p(z, g
The secondary metric measures the average progression of the learning curve.

It is defined by the geometric mean of the proportional growth of the probabili-
ties: Learning growth rate (LGR, secondary) =

s i| A = Ti) — i—1[Xi—1 = Tj—1 Y

i P(Li-1|Xi-1 = ;1)

where n is the length of the session.

4 The Benchmark

We define a System Under Test (SUT) as being an Exploratory OLAP system to
be evaluated. The main functionality of an exploratory OLAP tool is to support
user navigation over the data, to learn some insights from the data. Navigation is
defined as a sequence of views that corresponds to a sequence of queries that are
submitted to the system. In this context, the sequences the SUT helps to develop
are the target of our evaluation. In this section we define the interface between
the SUT and the benchmark and how the benchmark runs an experiment.

4.1 Interfacing with a SUT

In order to assess a SUT, the benchmark, simulates a user and interacts with
the SUT. The SUT first builds its inner structures, if any, and obtains input
metadata from the benchmark. Conceptually, a SUT requires as input all or part
of the following parameters: the database (schema and instance), user traces (i.e.,
sequences of queries collected into the query log) and the active user’s current
exploration (a sequence of queries). Let D denote the set of all database instances
for a given schema, Q denotes the set of all possible queries over this schema,
S denotes the set of all sequences of queries (i.e. Q@ x Q@ x ... x @), and 24
denotes the power-set of a set A. The functionality of a SUT can be defined
generically as doing the transformation: (D, 2%, 5) — S. Once the SUT is ready,
the evaluation protocol starts resolving a task, successively calling the SUT to
provide suggestions.

In practice, the benchmark is a Java program where SUTs can be plugged
to be evaluated. Its code and javadoc are available for SUT programmers on



BitBucket®. Basically, a SUT is sought twice, (1) before starting the evaluation
so it can initialize, and (2) whenever a next move suggestions is requested. From
the benchmark point of view, SUTs are only seen as a black boxes that perform
what they are asked to perform, through a contract. Practically, a SUT is a
class that implements an interface that exposes two functions readMetadata and
nextSuggestion. Function readMetadata is called before starting the actual
evaluation process, so the SUT can read and initialize its internal structure. Its
parameter is a Metadata object whose getters allow to access the cube, the list
of users, past user traces, etc. Function nextSuggestion is called many times
during a task resolution. It provides to the SUT a given user and a current
exploration (sequence of queries), and asks the SUT to recommend. It is the
responsibility of the benchmark to orchestrate the whole process, and to make
sure the functions are called with the right arguments.

4.2 How the Benchmark Works

The benchmark process is composed of three components. The first component
initializes the benchmark. It generates the context: the database (i.e., the cube),
some sequences of queries (i.e., the log), data skews to simulate interesting obser-
vations, and creates user profiles. You do not need to run this component if you
reuse an existing context, but you can also create a new context with different
schema or generation parameters.

The second component is responsible for the actual evaluation of a SUT. The
evaluation is a simulation of a user’s actual navigation, whereby the benchmark
suggests some initial sequence of queries asks the SUT for next move suggestions,
then it proposes some continuation, it switches to ask the SUT again, and so
on. This allows the benchmark to ask the SUT for suggestions multiple times,
in multiple phases and focusing multiple view areas.

The third component is in charge of computing scores and reporting results.
It considers the sessions produced with the SUT, and computes values for the
quality metrics presented in Section 3.2. The final step is to provide a report
aggregating these metrics, the main output of the benchmarking process. if we
do so

4.3 Component 1: Benchmark Initialization

Initialization consists of the synthesis of an OLAP user environment. The bench-
mark initialization process is sketched in Algorithm 1 and Figure 2, and consists
mainly of data creation and user generation.

Data generation An OLAP database (schema and instance) and a set of user
sessions over it are generated in lines 1-3. The default database schema is the
one of SSB benchmark [25], but the benchmark can be initialized with any
other OLAP schema. We use CubeLoad [27] for automatically generating user

® https:/ /bitbucket.org/mdjedaini/ea-benchmark



Algorithm 1 Generating benchmark objects

Input n: number of sessions, m: number of users, s: database scale factor (z1,. .., Zm):
a vector of percentages
Output D: database schema, I: database instance, U: set of users
1: D = Generate the database schema

2: S = Generate a set of n sessions over D
3: I = Generate an instance over D according to S
4: {s1,...,Sm} = Partition S by Similarity > user u; relates to sessions s;
5: for each s; do
6: (59, s3°¢d) = Split (s, x4) > log and seed sessions for u;
T Create generative model g; for siog > abstracts navigation patterns of u;
8: U; = (85097 S?eed7 gl)
9: U={ut,...,um}
10: return D, I, U
Data generation User creation
s 0 0000 w— 00000 i o,
5 0000 N~ 00O |
d D e e 1O
ata Lrohd g - [
5. 0 0000 N |

Fig. 2. Initialization process: (i) generation of data and user sessions; (ii) creation of
user profiles (visible sessions, hidden sessions and generative model).

sessions. CubeLoad generates realistic OLAP workloads, taking as input a cube
schema and the desired number of sessions. Its templates enable the creation of a
large number of sessions representing varied explorations and patterns. Finally,
a realistic database instance is generated with PDGF [26]. We use the more
frequent selection predicates in the log of sessions to produce data skew in the
most queried zones of the cube.

Users creation While CubeLoad enables the generation of a large workload and
creates feasible exploration patterns, it does not assign sessions to specific users.
We use an off-the-shelf clustering algorithm [21], using a similarity measure tai-
lored for OLAP sessions [3] to generate ”users”. In this way a user is charac-
terized by a set of sessions focusing on some zones of the cube (line 4). Each
set of sessions is split in two parts: log and seed sessions (line 6). The former
constitutes the user log that is exposed to the SUT, so that it can build its own
knowledge for suggesting next moves. The latter, not shown to the SUT, is used
to seed the benchmark tasks. The size of each user’s log is ruled by a parameter.
This allows the benchmark to evaluate the SUT when working with novice users
versus advanced users, creating tasks with different difficulty levels, in the sense
that it is more difficult for a SUT to suggest something interesting to a relatively
new user. Finally, a generative model is learned from the log (line 7), inspired
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by techniques of the OLAP literature [28,4]. This generative model is a Markov
Model that is used by Component 2, for simulating the interaction with a user.

4.4 Component 2: Evaluation of a SUT

This component is responsible for the simulation of a navigation, together with
the SUT, in order to resolve a given task. A task can be seen as an exercise
that has to be solved by SUTs. Tasks are created just before starting a SUT
evaluation. The evaluation protocol first provides a seed session, which is a set of
seed queries representing part of a navigation, as a context for continuation of the
navigation. Then it asks the SUT for a first next move suggestion that consists
of one or more queries. After the SUT suggestion, the benchmark decides if it
accepts or refuses the suggestion (a real user would either follow the suggestion
or not). The probability of discarding the suggestion is given as parameter. The
following step is for the benchmark to indicate the next query (a real user may
evaluate their own queries). This is chosen as the closest query in the user model
to the current query. This new query is then presented to the SUT to suggest
again, and the process continues as such until a stop condition. The simulation
is ran for a set of tasks (the number of tasks to run is a user-given parameter),
and the whole process is preceded by the definition of tasks to accomplish.

4.5 Component 3: Scoring

All the queries recorded during a task resolution are fed to the scoring component
so it can compute a score for the SUT for the given task using the metrics defined
in Section 3.2. First, each task receives a score for each metric. In practice, a



metric can be seen as a function that takes as input a task resolution (the queries
that were played), and provides as output a number that represents the score of
the metric for the given task.

5 Experiments

In this section we describe and report results on the experiments designed to
validate the proposed benchmark. A first version of the benchmark application
was coded in Java, using PDGF [26], CubeLoad [27] and Fuzzy C-medoids [21],
as explained in section 4. The tested SUTs were plugged to the benchmark
application using the interface class. Experiments use the default schema (SSB)
[25] with a scale factor of 1, a small global log of 50 sessions and 375 queries
and 9 users with 50% of seed sessions. We generated 100 tasks for each SUTs
to resolve. Tests were conducted on a laptop equiped with an i5-3210M CPU @
2.50GHz and 8GB of RAM.

5.1 Experimental setup

Validation. In order to test benchmark ranking, we compared three synthetic
SUTs that have simple behavior, and then expected results. 'Random’, the one
having worst strategy, returns purely random next move suggestions. 'Naive’
generates queries that are one OLAP operation away from the previous query.
It naively tries to stay close from the current query, but still chooses the next
move randomly within that neighborhood. ’Cheater’ uses ’insider information’
in order to return good suggestions taken from the log, including seed sessions.
Concretely, it replays queries containing cells from the neighborhood of the ones
in the seed session, which should fit the user’s needs in terms of task success. The
goal of this experiment is to confirm that the benchmark ranks these approaches
as expected.

Benchmarking existing approaches. We created an experimental setup to com-
pare the following approaches: CineCube [13] and Falseto [2]. CineCube is a
multifaceted approach focusing on building a user-friendly sequence of explana-
tions for the analysts. The approach highlights relevant cells in current views
and explores automatically expansion into two one-distance children and two
one-distance sibling queries, also summarizing the findings. Falseto is an OLAP
session composition tool that implements a recommender system based on col-
laborative filtering [2]. It features three phases: (i) search the log for sessions
that bear some similarity with the one currently being issued by the user; (ii)
extract the most relevant subsessions; and (iii) adapt the top-ranked subsession
to the current user’s session.

5.2 Analysis of Experimental Results

Table 3 shows the benchmark results for the tested SUTs. For each SUT, we
report its average score and standard deviation for the 100 tasks, for all the
benchmark primary and secondary metrics.



Engagement| Novelty | Success Time Learning
QD F |RNI|IVA| R | P |QpS| TET L |[LGR

Random | 102| 0,031 0,834[0,104[0,001]0,005| 545,88[0,855| 0,045
stdev 0] 0,012 0,190[0,166[0,002[0,003] 1032,08[0,117| 0,098
Naive 102] 0,117 0,6990,132[0,003]0,004] 1005,520,852( 0,469
stdev 0] 0,083 0,2100,174[0,004]0,004| 1425,54[0,123[0,278

Cheater | 39,50| 0,232
stdev| 21,76| 0,210
Falseto |473,94| 0,023
stdev| 39,95| 0,003

0,180/0,173]0,195|0,074| 285,61|0,778|0,473

0,353/0,186|0,380(0,135| 1155,29(0,194| 0,290

0,867(0,444|0,003|0,001{12111,78|0,835| 0,476

0,229|0,306|0,002|0,000| 6234,34|0,103| 0,293

Cinecube| 100,4| 0,053 0,947)0,388]0,215|0,084| 1853,59(0,752| 0,505

stdev| 21.97| 0,079 0,064(0,260(0,397|0,178| 4091,07|0,284| 0,300
Table 3. Scores of the SUT's

=l i =l =l =l =l

Validation. Globally, the results allow us to rank ’Cheater’ highest, followed by
"Naive’ and 'Random with the poorest performance, as expected. Having access
to detailed insider information (seed sessions), ’Cheater’ achieved a higher task
success in less time, and devising less queries. As a consequence, it is more fo-
cused, with a lower query depth. However, as it replays existing queries, increase
in view are is lower and it provides less learning, but with a more consistent
learning curve. 'Random’ propose completely random jumps in the multidimen-
sional space, which is less effective (lower task success) and produces unfocused
sessions. As it slowly contributes to task resolution, the stop condition (100
queries) stops its execution. That is why it obtains maximum query depth for
all tasks (stdev=0) but needs more execution time. Nevertheless, it randomly
explores other cube zones, so consequently increases view area and increases
learning. As expected, 'Naive’ stays half-way between ’Cheater’ and 'Random’.
By moving always close to the current query, it was able to stay within rele-
vant regions (so succeeding quite well) and being middle focused, but providing
some learning and some novelty. As 'Naive’, it executes until the stop condi-
tion obtaining maximum query depth. As its has a more complex strategy than
"Random’, execution times are higher.

Benchmarking existing approaches Results in Table 3 highlight the differences
between Falseto and Cinecube and helps deciding which is best in which case.
By definition, Falseto generates longer sessions than Cinecube as reflected by the
Query Depth score. Falseto also generates queries that are not only related to the
neighborhood of the last queries as Cinecube but that are based on collaborative
filtering with user past sessions to recommend next analysis moves. This leads
Falseto to have more diverse queries than Cinecube. This is an advantage when
it comes to explore the data as shown by Task Success Recall of Falseto that
is slightly better than Cinecube, but it comes at the cost of a lower precision,
because more part of the cube have been explored that are not related to the
objective. Falseto is also much slower than Cinecube as reflected by Time primary
and secondary metrics.



6 Conclusion

In this paper we proposed the first benchmark for assessing OLAP exploration
approaches. Modern OLAP exploration approaches are expected to suggest next
moves to users, but an important question is how to evaluate the quality of such
suggestions, and how to compare alternatives. Our benchmark uses state of the
art techniques to generate data and user traces, and for its metrics definition. The
benchmark is easy to use, requiring the SUT tester to write only a well-defined
interface, and classifies the SUT according to a set of user-centric metrics. This
is an important advance, since existing benchmarks focus almost exclusively on
performance, cost or energy. To validate the approach, we have proved that the
benchmark correctly ranks a set of strategies for which the behavior is known.

We plan to make all the details of the benchmark public for anyone to use and
improve, and our long-term goal is that it serves as a building block of a more
general benchmark for exploratory search over databases in general. We are cur-
rently working on turning our proposal into an industry-strength benchmark: we
are detailing rules, procedures, reporting procedures and documentation; we are
investigating the benchmark robustness and its sensitivity to the data and traces;
we are applying the benchmark to rank other existing exploratory approaches,
as a way to create a regular use base.
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