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Abstract. Lots of data are gathered in datawarehouses that are navigated and
explored for analytical purposes. Only recently has the problem of recommend-
ing a datawarehouse query to a datawarehouse user attracted attention. In this
paper, we propose a simple formal framework for expressing datawarehouse
query recommendations. We propose to see the problem of recommending a
datawarehouse query for exploration purposes as a function computing a set
of queries and associated ratings given a query log, a session, a user profile, a
datawarehouse instance, and an expectation function. The rating computed indi-
cates the usefulness of each query for a session. With this viewpoint, we review
and categorize the few techniques that, to the best of our knowledge, have been
proposed and we illustrate them with a case study.

1 Introduction
Lots of data are gathered and shared in databases that are navigated and explored for an-

alytical purposes. Only recently has the problem of recommending a database query to a
database user attracted attention (Chatzopoulou et al., 2009; Khoussainova et al., 2009; Ste-
fanidis et al., 2009). However, in other contexts (like e.g., e-commerce or web search) the
problem of computing recommendations is deeply investigated (Adomavicius and Tuzhilin,
2005; Baeza-Yates, 2010).

A typical example of database analysis is a datawarehouse navigated by decision mak-
ers using OLAP queries (Sarawagi, 2000). A datawarehouse can be seen as a large database
with a particular topology, shared by many analysts who have various interest and viewpoints,
explored by sequences of queries. In such a context, query recommendation is particularly rel-
evant since the user is left with the tedious task of navigating a large datacube to find valuable
insight.

In this paper, we survey the existing methods for computing datawarehouse query recom-
mendations. We restrict the scope of this survey to methods that, given a user’s query over
a datawarehouse, use it or transform it into another query, with a supposed added value for
the user’s exploration. We propose a formal definition of this problem, namely to see the rec-
ommendation of datawarehouse queries for exploration purposes as a recommending function
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taking as input: The datawarehouse query log, a particular query session called the current
session, a user profile, a datawarehouse instance, and an expectation function. Given these pa-
rameters this recommending function outputs a set of recommended queries, each with a given
rating indicating the interest of the query for the current session. We motivate this viewpoint
by reviewing the peculiarities of datawarehouses exploration, and we position this viewpoint
w.r.t. the ones given in Stefanidis et al. (2009) and Golfarelli (2010). With this viewpoint, we
review and categorize into four different approaches the few methods that, to the best of our
knowledge, exist. These approaches are then illustrated with a case study on a toy example of
OLAP exploration.

Note that we do not claim that our viewpoint allows to describe every possible recom-
mendation techniques. Instead our goal is to use it as a formal framework for describing the
existing approaches that suggest queries to further explore a datawarehouse during an analyti-
cal session.

This paper is organized as follows: Section 2 exposes the problem of datawarehouse query
recommendation with an intuitive example. Section 3 recalls the classical viewpoint on rec-
ommendation and the existing approaches in databases. Section 4 introduces our point of view
on query recommendation in datawarehouse, and Section 5 introduces and categorizes the few
works that propose a method for helping the user to explore a datawarehouse by suggesting
queries. Section 6 is a case study illustrating the different approaches in the context of a user
navigating a multidimensional database for on-line analytical purposes. Finally, Section 7
concludes and proposes research directions.

2 Motivation
In this section, we illustrate with an informal example various methods for recommending

queries for datawarehouse exploration purposes. The context of this example is that of a user
navigating a datawarehouse. In our example, the datawarehouse records sales of Vehicles
in different Locations at different Times. These sales are recorded as tuples called fact, an
example of which would be (red,North, 2009, amount, 10.000.000) that indicates that the
sales amount of red vehicles in region North in 2009 is 10.000.000.

Consider a user, called the current user, who launched a sequence of queries sc = 〈q1, q2〉,
called the current session, where q1 is the first query launched, and q2 the second one (and
the last one, called the current query, the result of which is depicted Figure 1). Suppose these
queries are respectively:

1. Sales of all vehicles in France

2. Sales of red or blue vehicles in the regions North or South

The problem we focus on is: What would the next query be to pursue the navigation? Various
proposals are possible.

First, it could be recommended a query on values that relate to the user’s profile. Suppose
that it is known that the user is interested in ’Paris’ if she queries data concerning region
North and that she prefers last year’s data. A possible recommendation could be to modify
her current query to incorporate these values, namely: Sales of red or blue vehicles in region
’North’, ’South’ and city ’Paris’ in ’2009’.
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FIG. 1 – Result of the current query

Second, it could be recommended a query whose result shows something surprising w.r.t.
users’ expectations. Let us have a closer look at the current query result of Figure 1.

It indicates that the sales of blue vehicles are twice the sales of red vehicles in region North.
The user may expect that such a difference also holds at more detailed levels. But suppose at
a more detailed level, it is found in the datawarehouse instance that for years 2007 and 2008,
it is the other way around: Sales of red vehicles are greater than sales of blue ones for region
North. It can thus be recommended a query dealing with the sales of red or blue vehicles in
the region North for years 2007 or 2008.

Third, it could be recommended a query that interested users other than the current user,
but whose session is similar to hers. Suppose it is found, for instance in the server log, a session
that is very similar to the current session. This logged session investigated sales of red or blue
vehicles in various French regions and cities, and it ended with a query asking for Sales of red
vehicles in Marseille in 2006, 2007, 2008, 2009. This query can then be recommended to the
current user.

Finally, a combination of the approaches above can be used, for instance to recommend a
query that was posed in the past by a user investigating the same unexpected data as the data
the current user is investigating. For instance, the following query can be recommended: Sales
of red or blue vehicles in the regions North or South for years 2006 to 2009. This query shows
a significant deviation from the user’s expectation.

We develop this scenario in Section 6 to illustrate the approaches used to generate such
recommendations.

3 Recommendations in databases

In this section, we briefly recall the classical viewpoint on recommendations (Adomavicius
and Tuzhilin, 2005), and its adaptations to databases.

3.1 Recommender systems

A recommender system is typically modelled as follows. Let I be a set of items and U be
a set of users (mostly customers). Let f be an utility function with signature U × I → R for
some totally ordered set R. Recommending s′ to u is to choose for the user u the item s′ that
maximizes the user’s utility, i.e., s′ = argmaxIf(u, i). The function f can be represented as
a matrix M = U × I , that records for any user u in U , any item i in I , the utility of i for u, that
is f(u, i). The problem of recommending items to users is that this matrix is both very large
and very sparse. Thus, many methods have been proposed for estimating the missing ratings.
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In general, these methods are categorized (Adomavicius and Tuzhilin, 2005) into: (i)
Content-based, that recommend items to the user u similar to previous items highly rated by u,
(ii) Collaborative, that consider users similar (i.e. having similar profiles) to the one for which
recommendations are to be computed as a basis for estimating its ratings and (iii) Hybrid, that
combine content-based and collaborative ones.

Note that Adomavicius et al. (2011) propose a multidimensional generalisation of this basic
two-dimensional formulation, especially to support profiling and contextualisation. The view-
point we propose in Section 4 can be seen as tailoring this generalisation to datawarehouse
peculiarities.

3.2 Recommendation in databases
Recently, to our knowledge, there has been only two attempts to formalize database query

recommendations for exploration (Chatzopoulou et al., 2009; Stefanidis et al., 2009). It is
important to see that given the context of database exploration, a direct transposition of the
users × items matrix is not relevant. Even assimilating customers with database users and
items with database queries raises questions, as illustrated by the fact that databases queries
can always be combined, or constructed from user interests, whereas this usually makes no
sense with items.

For Chatzopoulou et al. (2009), the problem is viewed as a sessions × tuples matrix. With
this approach, content-based, collaborative and hybrid methods have been developed.

Stefanidis et al. (2009) propose a users × queries matrix measuring the usefulness of a
query q to a user u. This utility is equal to the number of times user u has posed the query q.
It is claimed that the technique proposed by Chatzopoulou et al. (2009) falls into this category,
although conceptually the setting seems different since Chatzopoulou et al. (2009) consider a
sessions × tuples matrix.

Khoussainova et al. (2010) and Akbarnejad et al. (2010) focus on fragments (attributes,
tables, joins and predicates) of queries and consider thus sessions × query fragments matrix.
Starting from a query fragment q, the system searches in the query log similar fragments Q′.
Akbarnejad et al. (2010) recommend queries of the log containing Q′. Khoussainova et al.
(2010) recommend the most probable fragments of Q′ knowing that the initial fragment is Q.

Finally, we remark that for both these works, a fixed database instance is assumed and
nothing is proposed to take into account its evolution (it would make sense to consider the
database instance even in the history-based approach proposed by Stefanidis et al. (2009)).

3.3 Describing and classifying recommendation approaches
Stefanidis et al. (2009) propose a very interesting taxonomy of database recommendation

techniques. There are three categories: (i) ’Current-state’ approaches exploiting the content
and schema of the current query result and database instance, (ii) ’History-based’ approaches
using the query logs and (iii) ’External sources’ approaches exploiting resources external to
the database. Current-state approaches can be based either on (i) the local analysis of the
properties of the result of the posed query or (ii) the global analysis of the properties of the
database. In both cases systems exploit (i) the content and/or (ii) the schema of the query result
or the database. Hybrid methods combining local and global analysis or content and schema
can be computed. Stefanidis et al. (2009) focus on the ’Current-state’ approach and propose
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various techniques to recommend queries. Surprisingly, the taxonomy proposed by Stefanidis
et al. (2009) does not include a category for hybrid techniques mixing current-state and/or
history-based and/or external source techniques.

Golfarelli (2010) quickly reviews methods to relieve users from the burden of tedious an-
alytical query formulation (called query personalisation), and proposes 4 criteria to categorise
them:

• Formulation effort: some approaches require the user to manually specify preference
criteria for each query, while in others the best personalization criteria are inferred from
the context and the user profile.

• Prescriptiveness: some approaches use personalization criteria as hard constraints that
are added to a query while in other as soft ones: tuples that satisfy as much preference
criteria as possible are returned even if no tuples satisfies all the preferences.

• Proactiveness: distinguishes the approaches that propose new queries based on the navi-
gation log and on the context (but that does not execute them), with respect to those that
change the current query or post process its results before returning them to the user.

• Expressiveness: personalization criteria have different expressivities and can be differ-
ently combined.

In Section 7, we will use these categories and criteria to characterise the methods we survey.

4 Recommendation for datawarehouses
In this section we formalize the problem of recommending queries for datawarehouse ex-

ploration as a function taking into account various parameters including past sessions, dataware-
house instance, etc. We first motivate this formalization by looking at peculiarities of dataware-
house exploration, and then discuss this viewpoint w.r.t. those proposed for database query
recommendations (Chatzopoulou et al., 2009; Stefanidis et al., 2009).

4.1 Peculiarities of datawarehouse exploration
As evidenced by e.g., Chaudhuri and Dayal (1997); Sarawagi et al. (1998); Rizzi (2007)

basic peculiarities of typical datawarehouse exploration can be summarized by:

1. A datawarehouse is a read-mostly database and its instance has an inflationist evolution
(data are added, never or very seldom deleted). Thus it is quite common that a user issues
the same sequence of queries more than once, for instance from one year to another.
Therefore, if an analysis is conducted year x, it would make sense, if it is found that the
same analysis is started year x + 1, to recommend the queries launched year x adapted
to the data of year x + 1.

2. A datawarehouse is a database shared by multiple users whose interest may vary over
time. It is argued in Bellatreche et al. (2005); Rizzi (2007); Golfarelli and Rizzi (2009);
Rizzi (2010) that user preferences are of particular importance in datawarehouse explo-
ration. It would therefore be important to issue recommendations computed from other
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users’ habits (e.g., in a collaborative filtering fashion) and at the same time respecting
the user interests and privacy.

3. A datawarehouse has a particular schema that reflects a known topology, often called
the lattice of cuboids, which is systematically used for navigation (Han and Kamber,
2000). Rollup and drilldown operations that allow to see facts at various levels of detail
are very popular in this context. In addition, it is often assumed that the description of
the levels of detail (the dimensions table) is the part of the datawarehouse instance that
can fit in main memory, which is relevant for efficiency purpose in the case of on-line
recommendation computation. Recommendations should be computed by taking into
account this topology and the semantics attached to the OLAP operations.

4. A typical analysis session over a datawarehouse is a sequence of queries that has a sense
w.r.t. some expectations. For instance, the user may assume a uniform distribution of the
data (Sarawagi, 1999, 2000) or that two populations follow the same distribution (Or-
donez and Chen, 2009). Sessions (as sequences of queries) are of particular importance
in this context since by this sequence the user navigates to discover valuable insight w.r.t.
her expectations or assumptions. Thus sessions, and more precisely the logical connec-
tions between consecutive queries, must be treated as first class citizens when computing
recommendations (note that this viewpoint is consistent with the viewpoint adopted for
query recommendation in the web (Baraglia et al., 2009)).

4.2 Datawarehouse query recommendation
Let a datawarehouse query (or query for short) be any query expressible in a given language

for manipulating multidimensional data (for instance, the MDX query language). Let a session
be a sequence of queries and a log be a set of sessions. A datawarehouse instance is classically
a set of n+1 relation instances where n instances play the role of dimensions and one instance
is the fact table. A user profile is any information allowing to define an order over the tuples
in the fact table. Let an expectation function be any function on a datawarehouse instance that
produces a score (often a real number).

We formalize query recommendations for datawarehouse exploration as a function
Recommend(L, cs, I, P, f) that has the following parameters:

• L: A set of sessions (the query log),

• cs: A particular session (the current session),

• I: A datawarehouse instance,

• P : A user profile,

• f : An expectation function.

These parameters allow to cover Current-state (I and f ), History-based (L and cs), and
External sources (P ) approaches (Stefanidis et al., 2009).

The function Recommend returns an ordered set of pairs as recommendations, each pair
composed of a query with its associated rating indicating the relevance of the query for the
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current session. Note that it is out of the scope of this paper to detail the internal structure of
Recommend.

With this formalization, an explicit user rating for queries is not assumed. It is only consid-
ered that once a query is part of a session, it is relevant for the session. Note that queries that
do not appear in the former sessions (the log) nor in the current session may be constructed by
Recommend.

4.3 Discussion
This formalization is well adapted to describe existing proposals (see Sections 5 and 6). It

differs from the formalizations of Chatzopoulou et al. (2009); Stefanidis et al. (2009) by the
following aspects:

• Sessions are viewed as first-class citizens, and a clear distinction is made between the
current session and the past sessions.

• The topology of the database and user expectations are taken into account with the pa-
rameter f and the datawarehouse instance I .

• With a sessions× tuples matrix (Chatzopoulou et al., 2009), only the interest of individ-
ual tuples are taken into account for computing recommendation. Thus, groups of tuples
can not be rated.

• With a users × queries matrix (Stefanidis et al., 2009) it cannot be taken into account
the fact that a user can launch a sequence of queries, or that user interest for a query may
vary.

5 The existing approaches
In this section, we survey the methods that recommend queries for helping the user who

poses a sequence of queries over a datawarehouse instance for exploration purposes.
To the best of our knowledge, there are two types of works that investigate query recom-

mendations for datawarehouse exploration: Those that addressed explicitly the issue of rec-
ommending datawarehouse queries (Bellatreche et al., 2005; Giacometti et al., 2008, 2009a;
Jerbi et al., 2009; Golfarelli and Rizzi, 2009; Golfarelli et al., 2011), and those, less recent,
that did not describe themselves as recommendation techniques (Cariou et al., 2008; Sapia,
1999, 2000; Sarawagi, 1999, 2000; Sathe and Sarawagi, 2001). However, the latter suggest a
new query based on the user former queries, and thus can also be viewed as recommendation
techniques. Note that Bentayeb and Favre (2009), although claiming to recommend queries,
suggest changes in the instance (by proposing a new hierarchy), instead of, strictly speaking,
recommending a precise query.

These methods are categorized according to the parameters that they use when expressed as
calls to the Recommend function presented in the previous section. First, we found methods
that exploit information external to the datawarehouse (in our case a user profile). This category
resembles the external sources category proposed by Stefanidis et al. (2009). Second, the
methods that rely on expectations on the data. As such, this category has no correspondence
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in the taxonomy proposed by Stefanidis et al. (2009). Third, methods leveraging query logs,
corresponding to the history-based category of Stefanidis et al. (2009). Finally, the fourth
category is that of hybrid methods. This leads us to four approaches: Methods exploiting a
profile (presented in Section 5.1), methods based on expectations (presented in Section 5.2),
methods exploiting query logs (presented in Section 5.3) and hybrid methods (presented in
Section 5.4).

5.1 Methods exploiting a profile
The works in this category (Jerbi et al., 2009; Bellatreche et al., 2005) suppose that a

profile is provided together with the current session. A profile expresses user preferences over
the tuples of the fact table. These methods do not consider any expectations nor log, but take
the datawarehouse instance into account (more precisely for Bellatreche et al. (2005) only
dimension tables are considered). Thus the call to the Recommend function would be the
following: Recommend(∅, cs, I, P, ∅). where cs is the current session, I is a datawarehouse
instance and P is a profile.

For all these methods, the profile P and the instance I are used to modify the current query
(i.e., the last query of cs). The queries that are the result of this modification constitute the
recommendation.

Technically speaking, Jerbi et al. (2009) propose that a profile consists of a set of preference
predicates that can be added to the current query if they are consistent with it. In that case, the
rating output by the Recommend function estimates the interest of a query q for the session
cs by evaluating the proportion of relevant preferences that are added to the current query to
form q.

Bellatreche et al. (2005) propose to construct a recommended query q by using the ele-
ments of the profile P that guarantee that (i) q is included (in the classical sense of query
inclusion) in the current query, (ii) q only fetches preferred facts w.r.t. P and (iii) q respects
some visualization constraints. We note that the method of Bellatreche et al. (2005) differs
with the one of Jerbi et al. (2009) by the fact that the former computes a recommended query
that is included in the current query, whereas it is not necessary the case for the latter. In-
spired by Koutrika and Ioannidis (2005), the technique proposed by Bellatreche et al. (2005)
is called query personalisation (see Bentayeb et al. (2009) for an overview) instead of query
recommendation.

The technique of Golfarelli and Rizzi (2009); Golfarelli et al. (2011) also personalises a
query, that intends to compute a subquery of the current query. This work is close to Bella-
treche et al. (2005) but the approach differs in the sense that it is inspired by that of Kießling
(2002) where preferences are used to annotate the query, and uses a richer preference model.
In this case, the recommended query is the subquery that returns a non empty preferred answer.

The advantages of the methods in this approach is that recommendations are computed
w.r.t. both a profile and the user sessions. Thus different users will obtain different recommen-
dations.

5.2 Methods based on expectations
The works in this category (Cariou et al., 2008; Sarawagi et al., 1998; Sarawagi, 1999,

2000; Sathe and Sarawagi, 2001) rely on discovery driven analysis, where a model on unseen
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data is used together with the already seen data, i.e., the results of the launched queries. The
strongest deviations to the model are recommended.

We briefly recall the concept of discovery driven analysis. To support interactive analy-
sis of multidimensional data, Sarawagi et al. (1998) introduced discovery driven analysis of
OLAP cubes. This and subsequent work resulted in the definition of advanced OLAP op-
erators to guide the user towards interesting regions of the cube, lightening the burden of a
tedious navigation. These operators are of two kinds. The first kind tries to explain an unex-
pected significant difference observed in a query result by either looking for more detailed data
contributing to the difference (Sarawagi, 1999), or looking for less detailed data that confirm
an observed tendency (Sathe and Sarawagi, 2001). The second kind proposes to the user un-
expected data in the cube w.r.t. the data she has already observed, by adapting the Maximum
Entropy Principle (Sarawagi, 2000).

Recommendation methods based on discovery driven analysis consist in recommending
queries that result in data deviating the most from a model (that we call expectation). More for-
mally, this means that the call to the Recommend function is the following:
Recommend(∅, cs, I, ∅, f) where cs is the current session, I is the datawarehouse instance
and f is an expectation function.

Among the works in this approach, the main difference is the model used, i.e., the nature
of the function f . Sarawagi (1999); Sathe and Sarawagi (2001); Sarawagi (2000) rely on the
assumption of a uniform data distribution. In that case, f checks whether some parts of the cube
(either more detailed data or more aggregated data) respect this assumption and outputs a score
indicating the importance of the deviation from this assumption. In this case, Recommend
outputs the parts of the cube together with their score computed with the f function.

Cariou et al. (2008) assume a statistical independence of the cube’s dimensions. In that
case, f checks whether dimensions are independent and outputs a score indicating two di-
mensions’ correlation. Recommend outputs the query that, compared to the last query of cs,
details one particular dimension, together with the score for this dimension, computed with the
f function.

Note that Cariou et al. (2008) and Sarawagi (1999); Sathe and Sarawagi (2001) compute
suggestions using only the current query while Sarawagi (2000) considers every former query
result.

5.3 Methods exploiting query logs
The works in this category (Giacometti et al., 2008, 2009a; Sapia, 1999, 2000) suppose

that a query log is used to look for similarities between the current session and former ses-
sions, to extract one query as the recommendation. Formally, this means that the call to the
Recommend function is the following: Recommend(L, cs, I, ∅, ∅) where L is a query log
and sc is the current session.

The methods in this category mainly differ by the way they consider the similarity between
sessions and/or queries. Giacometti et al. (2009a) use the classical Levenshtein (for session)
and Hausdorff (for queries) distances. Sapia (1999, 2000) group queries by common projec-
tions and selections, and use a Markov model to represent sessions. Giacometti et al. (2008)
cluster queries using the Hausdorff distance and detects if the current session is a prefix of
some existing session. Sapia (1999, 2000) and Giacometti et al. (2008) identify a matching
position for the current session in the closest former session and recommend the query after
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FIG. 2 – Schema of the datawarehouse.

this position. Giacometti et al. (2009a) recommend the last query of the session that is the
closest to the current one. The rating that would estimate the interest of a query for the session
is computed based on the proximity of the current session with the log queries (Giacometti
et al., 2009a) or based on the probability to have the recommended query following the current
query (Sapia, 1999, 2000).

5.4 Hybrid methods
The only work in this category is Giacometti et al. (2009b). In this work, the query log is

processed to detect discovery driven analysis sessions. Sessions are associated with a goal, and
recommendations are queries of former sessions having the same goal as that of the current ses-
sion. This means that the call to Recommend is the following: Recommend(L, sc, I, ∅, f),
where L is a query log, sc is the current session, I is the datawarehouse instance and f is an ex-
pectation function. More precisely, the model of data and function f are as in Sarawagi (1999);
Sathe and Sarawagi (2001); Sarawagi (2000). The log is processed to discover pairs of facts
that show a significant difference. f is used to detect in the query results of the logged queries
those results that strongly deviate from the model. The score is computed accordingly. The
main difference with the methods in Sarawagi (1999); Sathe and Sarawagi (2001); Sarawagi
(2000) is that only the log is searched for interesting deviations.

6 Case study
In this section, we situate each of the four approaches presented in the previous section

in the context of the scenario sketched Section 2. Note that for presentation purposes, the
approaches are presented informally on a toy example to give the flavour of the approach
without overwhelming the reader with technical details. Most often, a simplified version of the
techniques proposed is used in the example.

6.1 The scenario
We consider the following typical case of a datawarehouse exploration by a sequence of

queries. The datawarehouse schema is given Figure 2. For the sake of simplicity, we consider
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a fixed datawarehouse instance I and we focus on only 11 queries noted q0 to q10 in what
follows. As in MDX, the de facto standard for querying cubes, each query is given under the
form of a set of cell references to extract from the cube, and is presented as a Cartesian product
of members per dimension (respectively Vehicles, Time and Location).
q0 = {Red, Blue} × {2006, 2007, 2008, 2009} × {North, South}
q1 = {AllV } × {AllT} × {France}
q2 = {Red, Blue} × {AllT} × {North, South}
q3 = {Red, Blue} × {2006, 2007, 2008, 2009} × {Paris}
q4 = {Red, Blue} × {2008 Sem1, 2008 Sem2} × {Paris, Marseille}
q5 = {AllV } × {AllT} × {France, Spain, England}
q6 = {Red, Blue} × {AllT} × {France}
q7 = {Red, Blue} × {2006} × {North}
q8 = {Red, Blue} × {AllT} × {Marseille}
q9 = {Red, Blue} × {AllT} × {Paris, North, South}
q10 = {Red, Blue} × {2009} × {Paris, North, South}

Suppose the current user is associated with a profile P indicating that the city Paris should
be taken into account if her query deals with region North, and that year 2009 is her preferred
year. We consider that the queries were used in three previous sessions s1, s2, s3 that constitute
the query log L, and in the current session cs as follows:

• s1 = 〈q5, q6, q2, q3, q0〉

• s2 = 〈q4, q6, q2, q3〉

• s3 = 〈q1, q2, q4〉

• cs = 〈q1, q2〉
Note that queries q7 to q10 do not appear in the previous sessions, they will be constructed

by some of the methods illustrated.
We now present what query each of the approaches would recommend in that context for

the current session. In what follows, we consider that the scores are in [0, 1].

6.2 Methods exploiting a profile
The call to the recommend function is Recommend(∅, cs, ∅, P, ∅). In this case, the recom-

mend function constructs queries by combining elements from the profile with the last query
of the current session cs. Recommend computes a score for each constructed queries. In our
example, this score is based on the number of members from the profile in the query. For q9 it
is 1

2 because this query deals only with ’2009’ (i.e., only 1 element out of 2 possible is taken
into account). For q10 it is 1 since this query deals with ’Paris’ and ’2009’. Thus the output of
Recommend is the set {(q10, 1), (q9, 1/2)}.

6.3 Methods based on expectations
Consider the result of q2 presented in Figure 1 showing a significant difference in sales

of red or blue vehicles in the North. A possible expectation would be that this difference is
equally distributed at more detailed levels.
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FIG. 3 – The Markov model of the log

The call to the recommend function is Recommend(∅, cs, I, ∅, f). In our example, f is a
function that, applied on two facts of a query result, computes to what extends pairs of facts of
I that detail the two facts of the result deviate from the expectation.

Recommend examines detailed data of I to discover pairs of facts contributing to this
difference. It is found that sales of Red or Blue vehicles in 2006 in the North on the one hand
and sales of Red or Blue vehicles in Marseille on the other hand deviates from the expectation.

SALES (Amount) Red Blue
2006, North 10 000 50 000

Marseille 10 000 40 000

For the sales of Red or Blue vehicles in 2006 in the North, the difference is 1 to 5 and
for the sales of Red or Blue vehicles in Marseille, it is 1 to 4. This difference is only 1 to 2
in the result of query q2. Hence, two queries are constructed to represent these difference at
more detailed levels, namely q7 and q8. The score of q7 is 1 − ( 1

5/ 1
2 ) = 0.6 and that of q8 is

1− ( 1
4/ 1

2 ) = 0.5 Thus, Recommend outputs {(q7, 0.6), (q8, 0.5)}.

6.4 Methods exploiting query logs

This approach leverages the query log L, i.e., sessions s1, s2, s3, to extract a query as
recommendation for session cs. The call to Recommend is Recommend(L, cs, I, ∅, ∅). We
briefly describe two different methods in this category. The first one models the log by a
Markov model, and the second one computes distances between sessions.

6.4.1 Using a Markov model

In this method, Recommend constructs the Markov model given Figure 3. Each node
is a query from the log and the weighted edge between queries q and q′ corresponds to the
probability of finding q′ after q in the sessions of the log.

In our example, Recommend computes a score for each query of the log that corresponds
to the probability of obtaining it after the current query q2 (the last query of the cs). For the
log, this score is 2

3 for query q3, 1
3 for query q4 and 0 for all other queries. Thus Recommend

outputs {(q3,
2
3 ), (q4,

1
3 )} as result.
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6.4.2 Using a distance between sessions

In these techniques, a similarity between sessions is computed to find in the log L the
sessions closest to the current session cs. In our example, this similarity is computed w.r.t. a
distance that gives the minimal number of operations on the sessions (say, add a query to a
session, remove a query from a session or substitute a query by another one) to transform cs
into s1 or s2. For instance, to transform cs into s1, it is necessary to add q5, substitute q1 by
q6, and add q3 and q0, i.e., four operations are necessary. Once the closest sessions to cs is
found, a particular query of each session is elected to be the recommendation. In our example,
suppose that the recommended query is the last query of the session, and the score for the
query is the similarity between cs and the session closest to cs containing the recommended
queries. Here, the closest session to cs is s3, since it takes 1 operation to transform cs into s3.
The similarity is computed as 1 minus (the similarity between sc and s3 over the maximum
difference between session). The recommended query is q4 with a score of (1 − 1

3 ). Thus
Recommend outputs {(q4,

2
3 )}.

6.5 Hybrid methods

This approach leverages both the log and what is done in the current session, by discovering
if the expectation of the current query was the same as some queries in the log. The call to
Recommend is Recommend(L, cs, I, ∅, f). In this example, f is the same as the one used
in the example describing the method based on expectation: Applied on two facts, it looks for
pairs of facts that deviate the most from the expectation that the difference in the result of q2 is
equally distributed at more detailed levels. The only difference is that it does not look directly
in the datawarehouse instance I but in the result of the queries logged in L.

In the log, only session s1 is such that (i) the same difference as the one of cs is investigated
and (ii) a query result shows a significant deviation at a more detailed level w.r.t. this difference
(in our example query q0). Note that q0 contains the same pair of fact as q7 and thus has the
same score. Thus Recommend outputs {(q0, 0.6)}.

7 Conclusion

In this paper, we survey the problem of recommending a datawarehouse query to a user to
guide her during her exploration. We propose to see the problem of recommending a dataware-
house query for exploration purposes as the call to a function Recommend that computes a
set of queries and associated ratings given a query log, a session, a user profile, a dataware-
house instance, and an expectation function. The rating computed indicates the usefulness of
each query for a session. With this viewpoint, we categorized the existing methods into four
approaches: (1) Methods exploiting a profile, (2) methods based on expectations, (3) methods
exploiting query logs and (4) hybrid methods. We illustrate them in a simple case study. This
categorisation is summarized in the table below:
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(1) (2) (3) (4)
L 3 3
cs 3 3 3 3
I 3 3 3 3
P 3
f 3 3

Note that these four categories can also been described, although less precisely, in terms of
the categorisation proposed by Stefanidis et al. (2009), as illustrated below:

(1) (2) (3) (4)
current-State local

global 3 3
hybrid 3 3

history-based query-based
user-based
hybrid 3 3

external source 3

Finally, note that all the approaches surveyed, except that of Golfarelli and Rizzi (2009);
Golfarelli et al. (2011), are proactive, prescriptive and require a low formulation effort.

We believe that the field of recommending datawarehouse queries is still in its infancy, as
evidenced by the fact that no techniques have yet been proposed that leverage together all the
possible parameters of the recommend function. Note also that most of the recommendations
given as example in Section 4.1 still cannot be computed with the existing approaches. Many
methods can be developed on the basis of the existing approaches identified in this paper. In
particular, it will be interesting to see how the techniques proposed by Chatzopoulou et al.
(2009); Stefanidis et al. (2009) can be adapted to the datawarehouse context.

An important challenge is to assess the quality of the recommendations computed, which
supposes the involvement of real users on real cases, to constitute a baseline. We see this as
a major difficulty due to the amount and sensitivity of the information needed, which include
real data, user profiles and expectations, as well as past and current analyses.

Another challenge is to propose a strategy for choosing which particular approach to adopt
in a given context. Finally, it would also be interesting to investigate the need for an even more
general framework than the one proposed in this paper, for instance by including parameters
like a set of datawarehouse instances or a set of user profiles.
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Résumé
De nombreuses données sont stockées dans les entrepôts de données. Celles-ci sont navi-

guées et explorées à des fins d’analyses. Ce n’est que récemment que le problème de recom-
mander une requête à un utilisateur interrogeant un entrepôt de données a attiré l’attention.
Dans cet article, nous proposons un cadre formel simple pour exprimer des recommandations
de requêtes sur un entrepôt de données. Nous proposons de voir le problème de recomman-
dation de requêtes pour l’exploration comme une fonction calculant un ensemble de requêtes
et les estimations associées à partir d’un log de requêtes, d’une session, d’un profil utilisa-
teur, d’une instance de l’entrepôt et d’une fonction de prévision. L’estimation calculée indique
l’utilité de chaque requête pour une session. Avec ce point de vue, nous passons en revue
et classons les quelques techniques qui, à notre connaissance, ont été proposées et nous les
illustrons avec une étude de cas.


