
Towards Intensional Answers to OLAP Queries for
Analytical Sessions

Patrick Marcel
University of Tours

3 Place Jean Jaurès
Blois, France

marcel@univ-tours.fr

Rokia Missaoui
Univ. of Quebec in Outaouais
101, Rue Saint-Jean-Bosco

Gatineau, Canada
rokia.missaoui@uqo.ca

Stefano Rizzi
University of Bologna
Viale Risorgimento, 2

Bologna, Italy
stefano.rizzi@unibo.it

ABSTRACT
One of the problems in analyzing large multidimensional
databases through OLAP sessions is that decision makers
can be overwhelmed by the size of query answers, while
they need a concise summary of data. Intensional query
answering can help by providing a concise description of ex-
tensional answers (i.e., the sets of retrieved facts), generally
relying on knowledge like integrity constraints, taxonomies,
or patterns discovered from data. This paper proposes a
framework for computing an intensional answer to an OLAP
query by leveraging on the previous queries in the current
session. Such intensional answer is concise and semantically
rich, and allows the size of the extensional answers returned
to be reduced, so as to achieve an effective trade-off between
conciseness and informational content. After describing the
general framework, we propose a specific instantiation that
relies on previous contributions in cube modeling and inten-
sional query answering.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—theory and methods; H.4.2 [Information Sys-
tems Applications]: Types of Systems—decision support

Keywords
OLAP, intensional query answering

1. INTRODUCTION
One of the key factors that rule the effectiveness of mul-

tidimensional analysis is the achievement of a satisfactory
(from the users’ viewpoint) compromise between the preci-
sion and the size of the information being analyzed. The
OLAP paradigm gives a significant support in this direction
by enabling users to interactively change the aggregation
level of data by zooming in (with the drill-down operator)
and out (with the roll-up operator), and to selectively view
only a subset of data (with the slice-and-dice operator). But

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DOLAP’12, November 2, 2012, Maui, Hawaii, USA.
Copyright 2012 ACM 978-1-4503-1721-4/12/11 ...$15.00.

this is not always sufficient: more detail gives more infor-
mation, but at the risk of missing the overall picture, while
focusing on general trends of data may prevent users from
observing specific small-scale phenomena.

Different approaches can be taken to cope with this is-
sue. For instance, in preference-based OLAP personalization
there is an attempt to avoid information flooding by consid-
ering the users’ preferred aggregation levels, measures, and
slices [7]. In approximate query answering, the focus is on
quickly returning an answer at the price of some imprecision
in the returned values [23]. Other approaches couple the
OLAP paradigm with data mining techniques to create an
OLAM approach where multidimensional data can be mined
“on-the-fly” to extract concise patterns for user’s evaluation,
but at the price of an increased computational complexity
and an overhead for analyzing the generated patterns [8].

Another interesting technique to tackle this problem is
intensional query answering. In the context of databases, an
intensional answer to a query q is an answer that, instead of
providing the precise and complete set of tuples returned by
q (which is called the extensional answer to q), summarizes
this set with a concise description of the properties the tuples
share [14]. Approaches for computing intensional answers
to database queries have been classified according to three
criteria [14]:

• Purity: the answer can be purely intensional or mixed
with extensional information.

• Completeness: the intensional answer can fully cover
the extensional answer or cover it only partially.

• Dependency: the computation of the intensional an-
swer can be dependent on the database extension or
use intensional information only.

In this paper we present a framework for intensional OLAP
query answering that returns a concise, yet informative an-
swer to a query posed by a user by leveraging on the queries
that user has previously addressed during the current OLAP
session. In our approach, an expected cube is created and
updated based on the results of each query in the current
session, as a representation of the user’s understanding of
the data. Each time a new query is posed, it is actually
executed on both the real cube and the expected cube; the
differences between the two answers express the relevant in-
formation for that query, i.e., the information that the user
could not correctly extrapolate from the previous answers
she got. These differences are effectively summarized using
the dimension hierarchies of the cube, and presented to the

user under the form of an intensional answer mixed with
a partial extensional answer. More specifically, the idea is
to use an intensional answer to concisely characterize the
cube regions whose data approximately match with the ex-
pectation, and an extensional answer to describe in detail
only the cube regions whose data significantly differ from
the expectation.

Using Motro’s criteria, our approach can be classified as
mixed, partial, and dependent. While it is general —because
it is independent of the particular method adopted for build-
ing the expected cube and deriving the intensional answer—
we precisely describe an instance of it that relies on previ-
ous contributions in the domain of cube modeling and in-
tensional answers.

The paper outline is as follows. Section 2 introduces the
general framework we propose while Section 3 describes a
specific instantiation. Section 4 discusses the related litera-
ture, and Section 5 draws the conclusion.

2. THE FRAMEWORK
This section motivates and then introduces the general

framework we propose, starting with the definition of cubes
and queries (based on a simplified formalization used in [1]).

2.1 Motivating Example
This simple example will give an intuition of our approach.

We consider a cube of sales per city, product, and month.
Three hierarchies are defined, namely LOCATION, PROD-
UCT, and TIME (see Figure 1). For example, a product
(Redtab) belongs to a group (Levi’s). A portion of the cube
is shown below.

Redtab Silvertab
Jan.11 Feb.11 Jan.11 Feb.11

Queens 50 40 30 40
Brooklyn 10 20 10 0
Toronto 0 10 0 10
Ottawa 0 10 0 10

All!
NY!

Ontario! Toronto!
Ottawa!
Queens!
Brooklyn!

All State City
LOCATION

All!
CK!

Levi’s! Redtab!
Silvertab!
Loose!
Lowrise!

All Group Product
PRODUCT

All!
2011!

2012! Jan.12!
Feb.12!
Jan.11!
Feb.11!

All Year Month
TIME

Figure 1: Dimension hierarchies

Consider an OLAP session consisting of three queries that
investigate monthly sales of products. The first query simply
asks for the grand total, i.e., the total sales for all products,
all locations, all years. The system returns the total, say
640, to the user and updates the expected cube accordingly.

The user then combines a drill-down and a slice opera-
tor to ask for the 2011 monthly sales per product per state.
Knowing the grand total, she might expect that the distri-
bution of sales is the following:

Redtab Silvertab Loose Lowrise
Ontario Jan.11 20 20 20 20

Feb.11 20 20 20 20
NY Jan.11 20 20 20 20

Feb.11 20 20 20 20

These values are indeed those currently stored in the ex-
pected cube. However, the actual (extensional) answer to
the query is as follows:

Redtab Silvertab Loose Lowrise
Ontario Jan.11 0 0 10 10

Feb.11 20 20 10 10
NY Jan.11 60 40 20 20

Feb.11 60 40 20 20

Parts of this answer match the user’s current understand-
ing of data while others do not; to reduce the overall size
of the answer, the system compares the extensional answer
with the data in the expected cube, and it only returns the
“unexpected” facts:

Redtab Silvertab Loose Lowrise
Ontario Jan.11 0 0 10 10

Feb.11 10 10
NY Jan.11 60 40

Feb.11 60 40

integrated with an intensional answer that summarizes the
“expected” facts:

〈Ontario, Levi’s, Feb.11〉: as expected
〈NY, CK, 2011〉: as expected

In this example, the “as expected” value is used to inform
the user that the facts not reported in the extensional an-
swer do not deviate at all from her expectation. A more
sophisticated form of intensional answer is discussed in Sec-
tion 3. Finally, the system uses the complete extensional
answer to update the expected cube.

Let the third query in the session be a drill-down to city.
The complete extensional answer is twice the size of the
previous one (because in this example we only have 2 cities
per state), but again the system may represent it concisely
using intensional information:

Redtab Silvertab
Jan.11 Queens 50 30

Brooklyn 10 10
Feb.11 Queens 40 40

Brooklyn 20 0

〈Ontario, All, 2011〉: as expected
〈NY, CK, 2011〉: as expected

Importantly, the “as expected” value is now to be inter-
preted with respect to the user understanding of data after
the previous answer. This means, for instance, that the sales
of Redtab in Toronto for Feb. 2011 is 10 (the Feb. 2011 sales
for Redtab in Ontario is 20, which is expected to be fairly
distributed between Toronto and Ottawa).

2.2 Preliminary Definitions

2.2.1 Cubes
Our formalization of cubes involves hierarchies; however,

to keep the formalism simpler, and without actually restrict-
ing the validity of our approach, we will consider hierarchies
without branches, i.e., consisting of chains of levels.

Definition 2.1 (Multidimensional Schema). A mul-
tidimensional schema (or, briefly, a schema) is a couple
M = 〈L,H〉 where:

• L is a finite set of levels, each level l ∈ L being defined
on a categorical domain Dom(l);

• H = {h1, . . . , hn} is a finite set of hierarchies, each
characterized by (1) a subset Li ⊆ L of levels (all Li’s
are disjoint); (2) a roll-up total order �hi of Li; and
(3) a family of roll-up functions including a function
Dom(lk) → Dom(lj) for each pair of levels lk and lj
such that lk �hi lj.

For each hierarchy hi, the top level of the order is called a
dimension, denoted by DIMi, and determines the finest ag-
gregation level for hi. Conversely, the bottom level (denoted
ALLi) has a single value in its domain (Dom(ALLi) = {All}
for each i) and determines the coarsest aggregation level.
Roll-up functions allow for values of fine-grained levels to be
mapped into values of coarse-grained levels.

A group-by set includes one level for each hierarchy, and
defines a possible way to aggregate data. A coordinate of a
group-by set is a point in the n-dimensional space defined
by the levels in that group-by set.

Definition 2.2 (Group-by Set). Given schema M,
let Dom(H) = L1 × . . .×Ln; each G ∈ Dom(H) is called a
group-by set of M. Let G = 〈lk1 , . . . , lkn〉 and Dom(G) =
Dom(lk1) × . . . × Dom(lkn); each g ∈ Dom(G) is called a
coordinate of G.

Let � denote the product order1 of the roll-up orders of
the hierarchies in H. Then, (Dom(H),�) is a lattice, that
we will call group-by lattice, whose top and bottom elements
areG> = 〈DIM1, . . . , DIMn〉 andG⊥ = 〈ALL1, . . . , ALLn〉,
respectively. Given two group-by sets G and G′ such that
G � G′ and two coordinates g ∈ Dom(G) and g′ ∈ Dom(G′),
we write g � g′ to denote that, for each hierarchy hi, the
value of level lki in g rolls-up to the value of level lk′i in g′

through the roll-up function from lki to lk′i . The domain of

G⊥ includes a single coordinate, g⊥ = 〈All, . . . ,All〉, such
that g � g⊥ for any coordinate g of any group-by set.

Example 2.1. In our example, n = 3 and City �LOCATION

State �LOCATION All; examples of group-by sets are:

G> = 〈City,Product,Month〉
G1 = 〈State,Product,Month〉
G2 = 〈All,All,Year〉

It is G> � G1 � G2. Examples of coordinates of these
group-by sets are, respectively,

g> = 〈Toronto,Loose, Jan.11〉
g1 = 〈Ontario,Loose, Jan.11〉
g2 = 〈All,All, 2011〉

with g> � g1 � g2 because Toronto rolls-up to Ontario,
Jan.11 rolls-up to 2011, and everything rolls-up to All as
shown in Figure 1.

A schema is populated with facts, each characterized by
a group-by set G that defines its aggregation level, a coordi-
nate of G, and a numerical value for a measure. To keep the
notation simple and without restricting the validity of our
approach, we will consider cubes having a single measure.

1The product order of n total orders is a partial order of the
Cartesian product of the n totally ordered sets, such that
〈x1, . . . , xn〉 � 〈y1, . . . , yn〉 iff xi � yi for i = 1, . . . , n.

Definition 2.3 (Cubes and Facts). Given a schema
M, an instance of M, called a cube, is a (partial) function
C :

⋃
G∈Dom(H) → R such that, for each G 6= G> and

g ∈ Dom(G), the value of C(g) is an aggregation of the
values of C(g>i) for all the g>i ’s such that g>i � g. We call a
fact of C any couple f = 〈g, C(g)〉 for which C(g) is defined.

For simplicity, we will consider a cube as a set of facts, so
we will write f ∈ C to denote that f is a fact of C. Also,
to transparently deal with the cube sparseness issues, in the
following we will denote with DomC(G) the active domain
of G in cube C, i.e., the subset of coordinates g of G for
which C(g) is defined.

Intuitively, a slice is a subset of facts of a cube that have a
given group-by set G and satisfy a given selection predicate
(expressed on hierarchy levels not finer than those in G). It
is formally defined as follows.

Definition 2.4 (Slice). Let M be a schema and C be
an instance of M. A slice schema of M is a couple Σ =
〈G,Gsel〉 where G and Gsel, with G � Gsel, are two group-
by sets of M. Given a coordinate gsel ∈ Dom(Gsel), the
slice of C according to schema Σ over gsel is the subset of
facts of C defined as follows:

σΣ,gsel(C) = {〈g, C(g)〉|g ∈ DomC(G), g � gsel}

Example 2.2. With reference to Example 2.1, an exam-
ple of fact is f = 〈g1, 10〉 which indicates that the amount of
sales in Ontario for product Loose in Jan.11 is 10. A possi-
ble slice schema is Σ = 〈G1, G2〉, and the slice according to
Σ over g2 is the set of monthly sales per state and product
in 2011.

2.2.2 Queries and Answers
The queries we consider are basic (GPSJ) OLAP queries

characterized by a group-by set and a selection predicate.
The extensional answer to a query is the set of facts at the
required group-by set that satisfy the selection predicate.
An OLAP session is a sequence of correlated queries formu-
lated by a user on a single cube; typically (but not necessar-
ily), each query in a session is derived from the previous one
by applying an OLAP operator (such as roll-up, drill-down,
and slice-and-dice).

Definition 2.5 (Query and Session). A query over
schema M is a couple q = 〈Σ, gsel〉 where Σ = 〈G,Gsel〉 is
a slice schema and gsel ∈ Dom(Gsel) is a coordinate. An
OLAP session is a sequence s of queries on schema M.

Definition 2.6 (Extensional Answer). Let C be a
cube with schema M and q = 〈Σ, gsel〉 be a query over M.
The extensional answer to q over C is the slice Extq(C) =
σΣ,gsel(C).

We now define the type of intensional answer we consider,
that is close to the one adopted in [20]. An intensional an-
swer is a set of couples, each associating a coordinate with
a quantification of predictability.

Definition 2.7 (Intensional Answer). Let C be a
cube with schema M and q = 〈Σ, gsel〉 be a query over M,
with Σ = 〈G,Gsel〉. An intensional answer to q over C is
any set of couples Intq(C) = {〈g′, d〉} such that

• g′ is a coordinate of a group-by set G′ such that G �
G′ � Gsel, g′ � gsel, and g′ ∈ DomC(G′);

• d is an attribute characterizing how close is the ac-
tual information for g′ to the user’s expectations. The
smaller d, the higher the similarity between actual data
and user’s expectations.

The coverage of Intq(C) is the subset of coordinates g ∈
DomC(G) such that Intq(C) includes a couple 〈g′, d〉 with
g � g′.

Note that, with this definition, couples at different group-by
sets can be mixed in an intensional answer. Besides, the
coverage of an intensional answer is always a subset of the
set of coordinates belonging to the extensional answer. In
particular, an intensional answer Intq(C) is complete if all
the coordinates in Extq(C) are included in the coverage of
Intq(C); it is non redundant if, for each g ∈ Dom(G), there
is at most one couple 〈g′, d〉 ∈ Intq(C) such that g � g′.

Example 2.3. With reference to Example 2.1 and given
slice schema Σ = 〈G1, G2〉, an example of query is q =
〈Σ, g2〉 (monthly sales per state and product in 2011). Con-
sistently with the cube shown in Section 2.1, two sample facts
in the extensional answer to q are

f1 = 〈〈NY,Loose, Jan.11〉, 20〉
f2 = 〈〈Ontario, Silvertab,Feb.11〉, 20〉

while a possible intensional answer could be

〈〈Ontario,Levi’s,Feb.11〉, 0〉
〈〈All,Levi’s, 2011〉, 80〉

where the d part of each tuple measures the absolute differ-
ence between the actual data and the expected ones. Note
that this intensional answer is redundant (fact f2 is covered
by both tuples in the intensional answer) and non-complete
(fact f1 is not covered). Moreover, the first entry of this
intensional answer states that the Feb. 2011 sales for the
Levi’s products in Ontario are exactly as expected.

2.3 Approach Overview
Given a query q over cube C, the basic idea of our work

is to return a hybrid answer that combines an extensional
part and an intensional part to achieve a satisfactory trade-
off between conciseness and precision. This trade-off is based
on the history of the data the user has seen so far during the
current OLAP session. The overall process can be sketched
as follows:

Startup: The user formulates her first query q1 over C; the
extensional answer Extq(C) is computed, returned to
the user, and used to initialize an expected cube EC,
sharing the same schema of C and storing a model of the
user’s expected values according to the data included in
Extq(C).

Iteration: For each subsequent query qi formulated by the
user:

0. Execute. Query qi is executed against C.

1. Predict. Query qi is executed against EC.

2. Improve. The extensional answer Extqi(C) is used
to update EC.

3. Build. An intensional answer Intqi(C) is built
based on the result of the comparison between
Extqi(EC) and Extqi(C), and returned to the user
together with the subset of Extqi(C) that comple-
ments the coverage of Intqi(C).

The generic structure of the framework is represented in
Figure 2. Besides query execution against the actual cube
(Execute), there are three components that are sequentially
processed as many times as there are queries in a session.
While Improve aims to continuously improve the quality of
the estimated values in the expected cube based on the gen-
erated extensional answer, Predict allows the computation
of the expected extensional answer that is further used by
Build together with the actual extensional answer to produce
an intensional answer. Such response is obtained by captur-
ing the differences between the two extensional answers at
some levels of aggregation.

Q: query	

C: data cube	

EC: expected cube	

EA: extensional answer	

EEA: expected ext. answer	

IA: intensional answer	

EAC: ext. answer complement	

C

0. Execute

1. Predict

2. Improve

3. Build

IA EAC

EA

EEA EC

Q

Figure 2: Steps of the approach

Next section will describe an instantiation of this frame-
work.

3. AN INSTANCE OF THE FRAMEWORK
In this section we describe a particular instance of the

framework, that relies on past contributions in the domain
of cube modeling [18, 16] and intensional answers [20, 17].
We first describe how the expected cube is maintained, then
how it is queried, and finally how the intensional answer is
built.

3.1 Improve
The expected cube, EC, can be seen as a representation of

the user’s understanding of the data in the actual cube. Af-
ter each query, appropriate parts of EC are compared with
the extensional answer in order to compute the intensional
answer (Predict); then, EC is updated using the extensional
answer. EC not only stores estimates for the measure val-
ues, but also a confidence conf(f) attached to each fact
f that indicates how reliable the estimated value is. It is
conf(f) = 1 if fact f is precisely known to the user, i.e., if
it has been shown to her as a part of the extensional answer
for a query of the current OLAP session.

We first explain how EC is updated, then how the confi-
dence is computed.

3.1.1 Estimating Facts
The Maximum Entropy principle has been successfully

used in the OLAP context for estimating a data cube’s fact

values [18, 16]. According to the maximum entropy princi-
ple, the best estimated values are those that maximize the
uniformity of data values, while maintaining the value of
known aggregates. In the context of OLAP, the collection
of known facts used for modeling purposes is the set of past
extensional answers.

We use the description given in [16] to define our esti-
mation principle. In this work, the authors were concerned
with reconstructing an n-dimensional cube instance based
on some of its aggregates, and they showed that this prob-
lem is analogous to that of reconstructing an n-dimensional
probability distribution from a number of its marginal dis-
tributions.

Given a slice schema Σ = 〈G,Gsel〉 and a coordinate gsel ∈
DomEC(Gsel), the fact values for slice σ = σΣ,gsel(EC) are
estimated as those that maximize the entropy H of σ using
the subset S of the facts of EC that aggregate facts in σ and
have confidence 1. More precisely, the problem is to find the
fact values that maximize

H(σ) =
∑

〈g,EC(g)〉∈σ

EC(g)× log(EC(g))

while respecting the aggregation constraints∑
〈g,EC(g)〉∈σ,g�g′

EC(g) = EC(g′), ∀〈g′, EC(g′)〉 ∈ S

where

S = {f ′ ∈ EC|f ′ = 〈g′, EC(g′)〉, G � G′, conf(f ′) = 1}

These estimates can be efficiently computed using Iterative
Proportional Fitting (IPF), the main method used in log-
linear modeling to model multi-way frequency tables.

Example 3.1. Consider slice schema Σ = 〈G1, G2〉, and
the slice according to Σ over g2 which is the set of monthly
sales per state and product in 2011. If the only known ag-
gregate is 640 (the grand total), the estimated value for each

fact of this slice is 640/2
16

= 20, since this value maximizes the
entropy of the slice. If it is also known that the overall sale
of CK products for 2011 is 120, then the estimated values
for this slice will be 120/8=15 for the facts related to CK
products, and 200/8=25 for those related to Levi’s products.

This solution for creating and maintaining the expected
cube suffers from the following drawbacks: 1) only aggre-
gates are considered for estimating fact values, and 2) it
relies on the assumption that data is generally uniformly
distributed, which may not be consistent with the user’s
view and with the actual data. Point (1) is easily dealt with
through Algorithm 1: each time a new query is posed to the
data cube C, each fact f in its extensional answer (line 1) is
used to update the facts of EC that are either in the same
slice (line 2), at a coarser granularity (using aggregation,
lines 3-4), or at a finer granularity than f (using IPF, lines
5-6). Note that the very first call to Algorithm 1 is done
with EC = ∅. Point (2) is discussed in Section 3.2.

Example 3.2. Consider the following sample of EC:

〈〈All,CK, 2011〉, 160〉
〈〈Ontario,CK, 2011〉, 80〉
〈〈NY,CK, 2011〉, 80〉

〈〈Queens,CK, 2011〉, 40〉
〈〈Brooklyn,CK, 2011〉, 40〉
〈〈Ottawa,CK, 2011〉, 40〉
〈〈Toronto,CK, 2011〉, 40〉

and suppose that a query is posed returning the following
extensional answer:

Algorithm 1 Improve EC

Input: σ = σ〈G,Gsel〉,gsel (EC): an extensional answer; EC: the
expected cube

Output: EC: the updated expected cube
1: for each fact f = 〈g, C(g)〉 ∈ σ do
2: let EC(g) = C(g)
3: for each group-by set G′ such that G � G′ do
4: recompute σ〈G′,Gsel〉,gsel

(EC)

5: for each group-by set G′ such that G′ � G do
6: maximize H(σ〈G′,Gsel〉,gsel

(EC))

7: return EC

〈〈Ontario,CK, 2011〉, 40〉
〈〈NY,CK, 2011〉, 80〉

EC can be updated based on this extensional answer, and
the sample above becomes:

〈〈All,CK, 2011〉, 120〉
〈〈Ontario,CK, 2011〉, 40〉
〈〈NY,CK, 2011〉, 80〉

〈〈Queens,CK, 2011〉, 40〉
〈〈Brooklyn,CK, 2011〉, 40〉
〈〈Ottawa,CK, 2011〉, 20〉
〈〈Toronto,CK, 2011〉, 20〉

3.1.2 Scoring the Estimates
The confidence conf(f) associated with each fact f ∈ EC

is a real in [0,1], with 1 assigned to facts whose measure value
is precisely known to the user. The estimates for EC are
obtained using known (i.e., with confidence 1) aggregates,
and it has been shown that the more precise the aggregate
used for estimation, the more accurate the estimate [16]. So,
let Agg(f) ⊆ EC be the set of the aggregates that have been
used to estimate f = 〈g,EC(g)〉, with g ∈ Dom(G):

Agg(f) = {f ′ ∈ EC|f ′ = 〈g′, EC(g′)〉, g � g′, conf(f ′) = 1}

The confidence conf(f) is computed as the maximum simi-
larity between G and the group-by sets of the aggregates in
Agg(f), where the similarity δ(G,G′) between two group-by
sets G and G′ is computed from the distance between G and
G′ in the group-by lattice in such a way that δ(G,G) = 1 for
any G and δ(G>, G⊥) = 0. The confidence of a slice of the
expected cube is the average of the confidences of its facts.

Example 3.3. Consider the fact f with coordinate 〈NY,
CK, Jan.11〉, and let

Agg(f) = {〈〈All,All,All〉, 640〉, 〈〈All,CK,2011〉, 120〉}

Aggregate 〈〈All,CK,2011〉, 120〉 is the one whose group-by
set 〈All,Group,Year〉 is the closest to the one of f , that is,
〈State,Group,Month〉. These group-by sets have distance 2
on the lattice, so the confidence for f in EC will be 0.66 (in
this case the maximum distance on the lattice is 6).

3.2 Predict
Given query q = 〈Σ, gsel〉, with Σ = 〈G,Gsel〉, the goal

of this step is to extract from EC the expected extensional
answer to q, i.e., the user’s understanding of the data asked
by q based on the data she saw so far during the current
session.

A basic way to achieve this goal is to define the expected
extensional answer as the exact slice obtained by posing
q against EC: Extq(EC) = σΣ,gsel(EC). However, more
elaborated approaches can be devised to deal with the cases
in which this slice has low confidence. In the approach we
present here, we try to derive a more reliable prediction
based on other slices that share the same slice schema Σ but
were estimated more accurately, i.e., by using aggregates at

closer group-by sets. In particular, we propose to define
Extq(EC) by using, besides σΣ,gsel(EC), the slice(s) of EC
with highest confidence among those having schema Σ.

Example 3.4. Consider the following sample of EC,
where each fact is associated with the aggregate used to esti-
mate it as well as with the fact’s confidence.

f Agg(f) conf(f)
〈〈Ontario,CK,2012〉, 80〉 〈〈All,All,2012〉, 320〉 0.4
〈〈NY,CK,2012〉, 80〉 〈〈All,All,2012〉, 320〉 0.4
〈〈Ontario,CK,2011〉, 80〉 〈〈All,CK,2011〉, 120〉 0.9
〈〈NY,CK,2011〉, 80〉 〈〈NY,All,2011〉, 280〉 0.9

The first two facts form slice σ2012 = σΣ,〈All,CK,2012〉 where
Σ = 〈〈State,Group,Year〉, 〈All,Group,Year〉〉 while the last
two facts form slice σ2011 = σΣ,〈All,CK,2011〉. Now let q ask
for the 2012 sales for CK by states. It turns out that the
estimates for 2011 (slice σ2011) have higher confidence than
those for 2012 (slice σ2012). Therefore, the former will be
used to adjust the latter.

Finding the slices of EC to compute the expected exten-
sional answer to q is done with Algorithm 2, whose expla-
nation is given below. Let

Same(G, gsel) = {g′sel ∈ DomEC(Gsel)|
∀i ∈ {1, . . . , n}, G.hi � Gsel.hi ⇒ g′sel.hi = gsel.hi}

where G.hi denotes the level of group-by set G in hierarchy
hi and g.hi denotes the value of coordinate g in hi. Im-
portantly, for each g′sel ∈ Same(G, gsel), and whatever the
hierarchy, the level value used in g′sel rolls up to the same
level value as the one used in gsel. Among the slices over the
coordinates in Same(G, gsel), the ones achieving the high-
est confidence are retained only (candidate slices, line 1 of
Algorithm 2):

Cand(q) = argmaxg′
sel
∈Same(G,gsel)conf(σΣ,g′

sel
(EC))

If σΣ,gsel(EC) ∈ Cand(q) (i.e., the slice precisely requested
by q has highest confidence) then it is returned as the ex-
pected extensional answer (lines 2-3). Otherwise, the other
slices in Cand(q) will be used as well (lines 4-18). Let g
be the coordinate of one of the facts in σΣ,gsel(EC) to be
predicted (line 7); let σ∗ be a slice in Cand(q) and g∗ be the
homologous coordinate to g in σ∗ (line 11). For each σ∗ (line
10), the proportion of EC(g∗) to the closest aggregate that
was used to estimate it (line 13) is computed and weighted
with the confidence of EC(g∗) (line 14). This weighted ratio
is applied to the aggregate that is used to predict EC(g). Fi-
nally, the prediction for EC(g) is the weighted average over
all slices in Cand(q) (line 16). Note that this principle is con-
sistent with the way IPF estimates values from aggregates.
Note also that the predicted slice as output by Algorithm 2
is not used to update the expected cube, since, as mentioned
above, only actual extensional answers are used to that end.

Example 3.5. Going on with Example 3.4, it is

Same(〈State,Group,Year〉, 〈All,CK,2012〉) =

{〈All,CK,2011〉, 〈All,CK,2012〉,
{〈All,Levi’s,2011〉, 〈All,Levi’s,2012〉}

and

Cand(q) = {σ2011}

The expected extensional answer will include fact 〈〈Ontario,
CK,2012〉, 172.3〉 because

320× 80
120
× 0.9 + 320× 80

320
× 0.4

0.9 + 0.4
= 172.3

Algorithm 2 Predict

Input: q = 〈Σ = 〈G,Gsel〉, gsel〉: the current query; EC: the ex-
pected cube

Output: Extq(EC): the expected extensional answer
1: let Cand(q) = argmaxg′

sel
∈Same(G,gsel)

conf(σΣ,g′
sel

(EC))

2: if σΣ,gsel
(EC) ∈ Cand(q) then

3: return σΣ,gsel
(EC)

4: else
5: Extq(EC) = ∅
6: Cand(q) = Cand(q) ∪ {σΣ,gsel

(EC)}
7: for each fact 〈g, EC(g)〉 ∈ σΣ,gsel

(EC) do

8: let vexp = 0
9: let sumcoef = 0
10: for each slice σ∗ ∈ Cand(q) do
11: let f∗ = 〈g∗, v∗〉 ∈ σ∗
12: let 〈gexag , v

ex
ag〉 = argminagg(〈g,EC(g)〉)δ(G,G

′)

13: let 〈g∗ag, v
∗
ag〉 = argminagg(f∗)δ(G,G

′)

14: vexp = vexp + (vexag × v∗
v∗ag
× conf(f∗))

15: sumcoef = sumcoef + conf(f∗)

16: vexp =
vexp

sumcoef

17: Extq(EC) = Extq(EC) ∪ {〈g, vexp〉}
18: return Extq(EC)

3.3 Build
The aim of this step is to derive an intensional answer

from the extensional answer obtained from C and from the
expected extensional answer obtained from EC. We propose
an approach loosely inspired by that of [17] and [20], in
the sense that hierarchies are used to derive the intensional
answer in the spirit of [17], and an information theoretic
characterization is used in the spirit of [20].

More precisely, the extensional answer Extq(C) and the
expected extensional answer Extq(EC) are compared by
computing, for each coordinate, the deviation of the fact
value in Extq(C) from the one in Extq(EC), using the esti-
mation error, normalized with the standard deviation of all
estimation errors, as in [16].

A first basic intensional answer is formed with these devi-
ations, as the set of couples {〈g, d〉} where d = |C(g)−EC(g)|

γ
,

〈g, C(g)〉 is a fact of the extensional answer, 〈g,EC(g)〉 is a
fact in the expected extensional answer, and γ is the stan-
dard deviation of all estimation errors.

The final intensional answer is derived from the basic in-
tensional answer by looking for regions of the basic inten-
sional answer where deviations are homogeneous enough (us-
ing a threshold α) and the mean deviation is low (using a
threshold β). These regions are delimited using the granular-
ity levels that are coarser than that of the basic intensional
answer.

The homogeneity is formally computed as the entropy,
i.e., for a given slice σ, it is H(σ) =

∑
〈g,d〉∈σ d × log(d),

and the final intensional answer is computed by Algorithm
3. Each couple 〈g, d〉 of the final intensional answer is in-
terpreted as the facts covered by 〈g, d〉 being close to the
prediction. This intensional answer is then complemented
with the facts of the extensional answer that are not cov-
ered by the intensional answer, since those facts deviate too

much from the prediction; note that, by doing so, the final
intensional answer is complete.

Algorithm 3 Build IA

Input: Extq(C): the extensional answer to q = 〈〈G,Gsel〉, gsel〉;
Extq(EC): the expected extensional answer to q; α, β: two
thresholds

Output: Intq(C): the intensional answer
Variables: BIAq : the basic intensional answer
1: let BIAq = ∅
2: for each coordinate g such that 〈g, C(g)〉 ∈ Extq(C) do

3: BIAq = BIAq ∪ {〈g, |C(g)−EC(g)|
γ 〉}

4: return Intq(C) = FindRegion(BIAq, G, α, β)

Function 4 FindRegion
Input: BIAq : an intensional answer to q; G: a group-by set; α, β:

two thresholds
Output: Intq : an intensional answer to q
Variables: IAGm , BIAGm : intensional answers
1: if H(BIAq) < α then . BIAq is homogeneous enough

2: let d =

∑
〈g,v〉∈BIAq v

|BIAq|

3: if d < β then . mean deviation is low enough
4: return {〈gsel, d〉}
5: else . mean deviation is too high
6: return ∅
7: else . BIAq is not homogeneous enough
8: for each Gm ∈ max�({G′ ∈ Dom(H)|G � G′}) do

9: let BIAGm = {〈g, d′〉 ∈ BIAq|g � g′, g′ ∈ Dom(Gm)}
10: let IAGm = FindRegion(BIAGm , Gm, α, β)

11: return
⋃
Gm IAGm

Example 3.6. Consider the motivating example of Sec-
tion 2.1, and the second query asking for 2011 monthly sales
per product per state. Suppose Algorithm 3 is called over
the extensional answer and the expected extensional answer
shown in Section 2.1, with α and β as low as possible. The
basic intensional answer includes only 6 couples where de-
viation is 0, corresponding to the facts where the expected
value and the actual value are the same. Then Function 4
is called and only two regions are detected as both homoge-
neous and with mean deviation 0, corresponding to coordi-
nates 〈Ontario, Levi’s, Feb.11〉 and 〈NY, CK, 2011〉. The
intensional answer is thus the set of couples

{〈〈Ontario, Levi’s, Feb.11〉, 0〉, 〈〈NY, CK, 2011〉, 0〉}

where 0 represents the mean deviation of the region and, in
this particular case, can be interpreted as “as expected”.

4. RELATED WORK
Substantial work has been conducted in order to query

and explore data cubes in a more meaningful manner. This
includes (but is not limited to) outlier detection in mul-
tidimensional data [11, 19, 21], cubegrade generation [10],
constrained gradient analysis [6], cube mining [22, 13], cube
modeling and compression [2, 3, 12, 19], and query answer
approximation [2, 4, 16].

Since our framework relies both on intensional query an-
swering (IQA) and cube modeling and approximation, this
section will briefly recall the meaning of IQA as well as pro-
vide an overview about the second topic.

4.1 Intensional Query Answering
Non-conventional query answering includes a variety of

answering mechanisms and happens when either the user

has no clear formulation of his needs (e.g., he does not know
what he really wants) or has a good understanding of his
needs but is flexible enough to accept an alternate, approx-
imate or intensional answer. This covers the production of
intensional query answers, i.e., the intent behind the answer
as well as other kinds of non-conventional answers. Accord-
ing to [15], an intensional query answer complements the
extensional one by including either a concise description of
the answer or some useful facts about it. Motro considers
that the effectiveness of an intensional answer can be ex-
pressed through the following criteria: completeness, non-
redundancy and optimality. Another kind of query answer-
ing mechanism is query relaxation which aims to relax the
query conditions in order to provide a non-empty (but ap-
proximate) answer while associative query answering gives
additional (and potentially useful) information about the
initial query.

To illustrate intensional query answering, let us assume
that the user needs to retrieve the sales of products per
month and city that are higher than $100,000 in the sec-
ond quarter. The intensional query answering system could
inform the user that the produced extensional answer cor-
responds to all products of a given group sold in the city of
Lyon, except product P1.

IQA relies generally on knowledge like integrity constraints,
inference rules (in knowledge-based systems), ontology (and
more frequently a taxonomy), and user’s preferences to ei-
ther provide more insight about the extensional answer or
give an approximate answer. The increasing popularity of
data mining technology [9] makes it possible to exploit devel-
oped tools and techniques to generate patterns from either
original data or the extensional answer to user’s query. Such
patterns could be association rules, classification/discrimi-
nation rules, clusters, trends, and outliers. For example, in
the presence of the following implication: if monthly sales
per product and city for the second quarter are higher than
$100,000, then the population of the city is more than three
million persons and the product is a sport item, then the in-
tensional answer to the previous query is very concise and
more appealing to the user than a display of many facts.
It will indicate the specificity of the cities and products in-
volved in the extensional answer.

4.2 Cube Modeling and Exploration
As pointed out earlier, some studies were concerned with

cube modeling and exploration. For example, the work
in [19] presents an approach based on log-linear modeling to
identify exceptions in data cubes by comparing anticipated
cell values against actual values while in [3], log-linear mod-
eling is also used for data compression. In [12] the authors
apply non-negative multiway array factorization (NMF) for
approximating, modelling and exploring data cubes, and
then compare this technique against log-linear modeling for
cube approximation and compression purposes. They also
show how NMF can provide a good approximation to OLAP
queries by exploring the generated model rather than the ac-
tual data cube. This is particularly true for queries involv-
ing selection and/or roll-up on dimensions. The work by Xi
et al. [24] presents an asymptotically lossless technique to
compress data cubes to further execute OLAP queries and
generate logistic regression models.

Our present work is close to the studies conducted in-
dependently by [16, 18] since cell estimation is involved in

each one of the three studies (including our present work)
using maximum entropy principle. Indeed, the objective in
[18] is to estimate the values of non visited parts of a data
cube based on the previously seen parts during an analyti-
cal session while in [16] the objective is to provide approx-
imate answers and identify exceptions. In our case, we use
the same principle for the second step of (an instance of)
our framework to update the expected cube to further pro-
duce intensional answers by comparing extensional answers
against expected extensional answers and computing aggre-
gates using dimension hierarchies.

5. CONCLUSION
In this paper we have presented a framework for inten-

sional query answering in OLAP applications that returns
a concise, yet informative answer to a user’s query by ex-
ploiting the queries previously formulated during the current
OLAP session. In our approach, an expected cube is created
and updated based on the extensional answer to each query
in the current session, as a representation of the user’s un-
derstanding of the data. For each new query, an intensional
answer concisely characterizing the data that approximately
match with the user’s understanding is returned, coupled
with a partial extensional answer that describes in detail the
data that significantly differ from the user’s understanding.

We believe that our framework is generic and flexible
enough to allow different instantiations for each of the three
steps (Improve, Predict and Build) involved in the genera-
tion of the intensional answer. For example, the Build step
can accommodate different perspectives (i.e., different kinds
of intensional answers) and use a variety of knowledge pat-
terns other than dimension hierarchies (e.g., user’s profile).

6. REFERENCES
[1] J. Aligon, M. Golfarelli, P. Marcel, S. Rizzi, and

E. Turricchia. Mining preferences from OLAP query
logs for proactive personalization. In Proc. ADBIS
2011, pages 84–97, Vienna, Austria, 2011.

[2] B. Babcock, S. Chaudhuri, and G. Das. Dynamic
sample selection for approximate query processing. In
Proc. SIGMOD, pages 539–550, San Diego, California,
2003.

[3] D. Barbara and X. Wu. Loglinear-based quasi cubes.
Journ. Intell. Inf. Syst., 16(3):255–276, 2001.

[4] A. Cuzzocrea and W. Wang. Approximate range-sum
query answering on data cubes with probabilistic
guarantees. Journ. Intell. Inf. Syst., 28(2):161–197,
2007.

[5] W. Deming and F. Stephan. On a least squares
adjustment of a sampled frequency table when the
expected marginal total are known. The Annals of
Mathematical Statistics, 11(4):427–444, 1940.

[6] G. Dong, J. Han, J. M. W. Lam, J. Pei, and K. Wang.
Mining multi-dimensional constrained gradients in
data cubes. In Proc. VLDB, pages 321–330, San
Francisco, USA, 2001.

[7] M. Golfarelli, S. Rizzi, and P. Biondi. myOLAP: An
approach to express and evaluate OLAP preferences.
IEEE Trans. Knowl. Data Eng., 23(7):1050–1064,
2011.

[8] J. Han. OLAP mining: Integration of OLAP with

data mining. In Proc. Conf. on Database Semantics,
pages 3–20, 1997.

[9] J. Han, M. Kamber, and J. Pei. Data Mining:
Concepts and Techniques (3rd edition). Morgan
Kaufmann, 2011.

[10] T. Imielinski, L. Khachiyan, and A. Abdulghani.
Cubegrades: Generalizing association rules. Data Min.
Knowl. Discov., 6(3):219–257, 2002.

[11] E. M. Knorr, R. T. Ng, and V. Tucakov.
Distance-based outliers: algorithms and applications.
The VLDB Journal, 8(3-4):237–253, 2000.

[12] R. Missaoui, C. Goutte, A. K. Choupo, and
A. Boujenoui. A probabilistic model for data cube
compression and query approximation. In Proc.
DOLAP, pages 33–40, 2007.

[13] R. Missaoui and L. Kwuida. Mining triadic association
rules from ternary relations. In Proc. ICFCA, pages
204–218, 2011.

[14] A. Motro. Intensional answers to database queries.
IEEE Trans. Knowl. Data Eng., 6(3):444–454, 1994.

[15] A. Motro. Cooperative database systems. Encyclopedia
of Library and Information Science, 66:79–97, 2000.

[16] T. Palpanas, N. Koudas, and A. O. Mendelzon. Using
datacube aggregates for approximate querying and
deviation detection. IEEE Trans. Knowl. Data Eng.,
17(11):1465–1477, 2005.

[17] E. K. Park and S.-C. Yoon. An approach to intensional
query answering at multiple abstraction levels using
data mining approaches. In Proc. HICSS, 1999.

[18] S. Sarawagi. User-adaptive exploration of
multidimensional data. In Proc. VLDB, pages
307–316, Cairo, Egypt, 2000.

[19] S. Sarawagi, R. Agrawal, and N. Megiddo.
Discovery-driven exploration of OLAP data cubes. In
Proc. EDBT, pages 168–182, London, UK, 1998.
Springer-Verlag.

[20] C.-D. Shum and R. R. Muntz. An
information-theoretic study on aggregate responses. In
Proc. VLDB, pages 479–490, Los Angeles, USA, 1988.

[21] Z. Tang and R. Li. A novel regression mining
algorithm based on multi-dimensional data. Journ. of
Computational Inf. Syst., 6(5):1459–1465, May 2010.

[22] H. C. Tjioe and D. Taniar. Mining association rules in
data warehouses. IJDWM, 1(3):28–62, 2005.

[23] J. S. Vitter and M. Wang. Approximate computation
of multidimensional aggregates of sparse data using
wavelets. In Proc. SIGMOD, pages 193–204,
Philadelphia, USA, 1999.

[24] R. Xi, N. Lin, and Y. Chen. Compression and
aggregation for logistic regression analysis in data
cubes. IEEE Trans. Knowl. Data Eng., 21(4):479–492,
2009.

	Introduction
	The Framework
	Motivating Example
	Preliminary Definitions
	Cubes
	Queries and Answers

	Approach Overview

	An instance of the framework
	Improve
	Estimating Facts
	Scoring the Estimates

	Predict
	Build

	Related work
	Intensional Query Answering
	Cube Modeling and Exploration

	Conclusion
	References

