Recommending Multidimensional Queries

Arnaud Giacometti, Patrick Marcel, Elsa Negre

LI - Université François Rabelais Tours

DAWAK'09

Arnaud Giacometti, Patrick Marcel, Elsa Negre Recommending Multidimensional Queries

Outline

2 The recommender system

Conclusion & Future work References Bonus Motivations Recommender system Experiments 000 Motivations & Intuitions

Related work

- [Khoussainova et al., CIDR09]: DB & recommendations?
- [Chatzopoulou G., SSDBM09]: DB recommending SQL queries
- [Sarawagi, VLDB00, Sarawagi and Sathe, SIGMOD00, Cariou et al., DaWaK08]: Discovery driven analysis
- [Jerbi et al., DaWaK09]: Content-based filtering

5/24

Motivations 000	Recommender system ●00000	Distances 000	Experiments 0000	Conclusion & Future work	References	Bonus
Logs						

メロト メポト メヨト メヨト 三日

OBTAIN SESSIONS MATCHING THE CURRENT SESSION

How?

Candidate Sessions: Comparison of queries sequences (sessions) **Need**: Distance between sessions

Motivations 000	Recommender system ○o●○○○	Distances 000	Experiments 0000	Conclusion & Future work	References	Bonus
Step 1:	Matching					

8 / 24

イロト イロト イヨト イヨト 二日

Step 2: Selecting

SELECT QUERIES CONTAINED IN CANDIDATE SESSIONS

How?

Candidate Queries: the last query of each candidate session Analogy with Web : the last query contains the goal of the session

RANKING CANDIDATE QUERIES

How?

Recommended Queries: the closest to the last query of the current session in the sense of the distance between queries.

Need: Distance between Queries - Hausdorff distance

Motivations	Recommender system ○○○○○●	Distances 000	Experiments 0000	Conclusion & Future work	References	Bonus
Step 3:	Ranking					

Definiti	ions by the i	practic	2			
Motivations 000	Recommender system 000000	Distances ●○○	Experiments 0000	Conclusion & Future work	References	Bonus

Distance between References

• Queries:

Dofinit	ione by the	practic	<u>^</u>			
Motivations 000	Recommender system 000000	Distances ●○○	Experiments 0000	Conclusion & Future work	References	Bonus

Distance between References

- Queries:
 - q₁: Number of sales of drinks in *France* in 2007 and 2008:

SALES	France	
Drink	2007	10
	2008	20

 $\{\langle Drink, France, 2007 \rangle, \langle Drink, France, 2008 \rangle\} = \{r_1^1, r_1^2\}$

	000000	000	0000			
Motivations	Recommender system	Distances	Experiments	Conclusion & Future work	References	Bonus

Distance between References

- Queries:
 - q_1 : Number of sales of drinks in France in 2007 and 2008: $\{\langle Drink, France, 2007 \rangle, \langle Drink, France, 2008 \rangle\} = \{r_1^1, r_1^2\}$

• q_2 : Number of sales of all products in Austria in 2008: $\{\langle AII, Austria, 2008 \rangle\} = \{r_2^1\}$

SALES	France	
Drink -	2007	10
	2008	20

SALES	3 : Number	Austria
A11	2008	15

• Distance between members: shortest path

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• q_2 : Number of sales of all products |A11| | 2008in *Austria* in 2008: $\{\langle AII, Austria, 2008 \rangle\} = \{r_2^1\}$

• Distance between members: shortest path

• Distance between references: $d_{ref}(r_1^2, r_2^1) = d_{members}(Drink, All) + d_{members}(France, Austria) + d_{members}(2008, 2008)$ = 2 + 2 + 0 = 4

Austria

France

Centre

Definiti	ons by the i	oractic	e			
Motivations 000	Recommender system	Distances ○●○	Experiments 0000	Conclusion & Future work	References	Bonus

Distance between Queries

- Queries:
 - q_1 : Number of sales of drinks 2007 Drink 2008 in France in 2007 and 2008: $\{\langle Drink, France, 2007 \rangle, \langle Drink, France, 2008 \rangle\} = \{r_1^1, r_1^2\}$
 - A11 • q₂: Number of sales of all products in Austria in 2008: $\{\langle AII, Austria, 2008 \rangle\} = \{r_2^1\}$
- Hausdorff distance:

$$d_h(q_1, q_2) = \max\{\max_{r_1 \in q_1} \min_{r_2 \in q_2} d_{ref}(r_1, r_2), \\ \max_{r_2 \in q_2} \min_{r_1 \in q_1} d_{ref}(r_1, r_2)\} =$$

SALES : Number France

SALES : Number Austria

2008

10

20

Motivations 000	Recommender system 000000	Distances ○○●	Experiments 0000	Conclusion & Future work	References	Bonus
Definit	ions by the i	practic	e			

Distance between Sequences			
Words (sequences of letters)	Sessions (sequences of queries)		
d _{ed} (CAR,CAT)	$d_{ed}(q_3,q_1 ightarrow q_2)$		
Operations costs :	Operations costs :		
substitution of a letter by another $= 1$	substitution of a query q by another q' = $d_H(q, q')$		
insertion (or deletion) of a letter $=1$	insertion (or deletion) of a query $= 2$		
$CAR \xrightarrow{C} AR$ $0 1 2 3$ $C 1 0 1 2$ $A 2 1 0 1$ $T 3 2 1 1$ $CAR \xrightarrow{subst(R,T)} CAT = 1$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

Present	tation					
Motivations	Recommender system	Distances 000	Experiments	Conclusion & Future work	References	Bonus

Our generator

- The cube
 - Foodmart database (Mondrian OLAP engine)
- The sessions
 - max 100 references per MDX query
 - X sessions in log
 - max Y queries per session
- Property
 - high density of the generated log

Measure of the time taken to propose a recommendation

Observations

- Time increases slowly with log size
- Negligible time (<100ms)

< ロ > < 同 > < 回 > < 回 >

Conclusion & Future work References Motivations Recommender system Experiments Bonus 0000 Precision/Recall analysis

Protocol

- I0-fold cross validation
 - \Rightarrow Assess how the results of our proposition will generalize to an independent data set [Chatzopoulou G., SSDBM09].
 - Generated set of sessions : 10 equally sized subsets
 - Log = 9 subsets
 - Current session = each session of 1 subset without the last query
 - Last query of current session : the expected query (q_{ex})
 - Computation of the recommended query (q_{rec}) for q_{ex}

 Motivations
 Recommender system
 Distances
 Experiments
 Conclusion & Future work
 References
 Bonus

 Precision/Recall analysis

Is the recommended query the expected query?

Test

inverse CFD [Precision, Recall, F-measure]

Observations

Effectiveness of the proposition for dense log

ର ୯ .8 / 24

Motivations 000	Recommender system 000000	Distances 000	Experiments 0000	Conclusion & Future work	References	Bonus
Conclu	sion & Futu	re worl	<			

Contributions

- A method to propose MDX queries as recommendations
- Experiments results:
 - Recommendations can be computed efficiently
 - Objectively good recommendations

Future work

- Query recommendations for OLAP discovery driven analysis [Giacometti *et al.*, DOLAP09]
- Incorporate OLAP query personalization
- Experiments on real data with users feedbacks
- Contributing to a collaborative query management system [Khoussainova *et al.*, CIDR09]

Motivations	Recommender system	Distances	Experiments	Conclusion & Future work	References	Bonus

Thank you for your attention. Any questions?

- Véronique Cariou, Jérôme Cubillé, Christian Derquenne, Sabine Goutier, Françoise Guisnel, and Henri Klajnmic.
 Built-in indicators to discover interesting drill paths in a cube. In DaWaK '08: Proceedings of the 10th international conference on Data Warehousing and Knowledge Discovery, pages 33–44, Berlin, Heidelberg, DaWaK'08. Springer-Verlag.
- Polyzotis N. Chatzopoulou G., Eirinaki M. Query recommendations for interactive database exploration. In 21st International Conference on Scientific and Statistical Database Management, June 2-4, 2009, New Orleans, Louisiana USA, SSDBM'09.

Arnaud Giacometti, Patrick Marcel, Elsa Negre, and Arnaud Soulet.

Query recommendations for OLAP discovery driven analysis. DOLAP'09.

Houssem Jerbi, Franck Ravat, Olivier Teste, and Gilles Zurfluh.

Preference-based recommendations for OLAP analysis. DaWaK'09.

 Nodira Khoussainova, Magdalena Balazinska, Wolfgang Gatterbauer, YongChul Kwon, and Dan Suciu.
 A case for a collaborative query management system.
 www.crdrdb.org, CIDR'09.

Motivations 000	Recommender system	Distances 000	Experiments 0000	Conclusion & Future work	References	Bonus
Referer	nces III					

Sunita Sarawagi and Gayatri Sathe.

i³: Intelligent, interactive investigaton of olap data cubes. In *SIGMOD Conference*, page 589, SIGMOD'00.

🔋 Sunita Sarawagi.

User-adaptive exploration of multidimensional data. In *VLDB*, pages 307–316, VLDB'00.

Motivations	Recommender system	Distances	Experiments	Conclusion & Future work	References	Bonus

