Linguistic and Computational Morphology ${ }^{1}$

Agata Savary

December 19, 2008

[^0]
Morphology

Linguistic discipline interested in the internal structure of (written) words.

What is a word?

In linguistics a word has two senses:

- Lexeme = abstract ("deep") unit having a certain meaning, and belonging to a certain class; lexicon $=$ set of lexemes
- Word form = different textual ("surface") realizations of a lexeme

The inflection paradigm $=$ all word forms of a lexeme.
A lemma $=$ a canonical word form chosen to represent the lexeme.

	Word forms	Lemma
French	\{porte, portes $\}$	porte
	$\{$ porter, porte, portes, portiez, ...\}	porter
	$\{$ à\}	à
Your language		

Types of morphological rules

Inflectional categories and values (1/4)

	English (Germanic)	French (Latin)	Serbian (Slavic)	Your language (\ldots).
Number $(N b)$	singular (s) plural (p)	singular (s) plural (p)	singular (s) plural (p) paukal ($w)$	
Gender $($ Gen $)$		masculine (m) feminine (f)	masculine (m) feminine ($f)$ neuter ($n)$	
Case		nominative (1) genitive (2) dative (3) accusative (4) instrumental (5) locative (6) vocative (7)		

Inflectional categories and values (2/4)

	English	French	Serbian	Your language
Degree $(D e g)$	positive $(<E>)$ comparative (C) superlative (S)		positive (a) comparative (b) superlative (c)	
Person $($ Pers $)$	first (1) second (2) third (3)	first (1) second (2) third (3)	first (x) second (y) third (z)	
Animate- ness $($ Anim $)$			animate (v) inanimate (q) no-care (g)	

Inflectional categories and values (3/4)

	English	French
Tense and mood (TM)	infinitive (W): do present indicative (P) : does imperfect indicative (I): did past participle (K): done gerund (G) : doing	infinitive (W): faire present indicative (P) : faisons imperfect indicative (I): faisait present subjunctive (S): fasse imperfect subjunctive (T) : fisse present imperative (Y) : faites present conditional (C) : ferait simple past (J): fit past participle (K): faite gerund (G): faisant future (F) : fera

Inflectional categories and values (4/4)

	Your language
Tense	
and	
mood	
$(T M)$	

Inflectional classes \approx parts of speech (POS) $(1 / 6)$

	Noun	Max. forms
English	年flects in number: dog, dogs	2
French	inflects in number toile, toiles has gender toile OR inflects in gender cousin, cousine	
Serbian	inflects in number has gender OR inflects in gender	4
inflects in case has animateness	28	
Your language		

Inflectional classes \approx parts of speech (POS) (2/6)

	Adjective	Max forms	
English	uninflected OR inflects in	famous	3
French	big, bigger	inflects in inflects in	bleu, bleus bleue, bleues

Inflectional classes \approx parts of speech (POS) $(3 / 6)$

	Verb		Max. forms
English	inflects in inflects in inflects in	go, went, going go, goes am, are	9
French	inflects in inflects in inflects in inflects in	être, suis, été suis, es, est suis, sommes aimés, aimées	51
Serbian	inflects in tense-mood inflects in person inflects in number inflects in gender		dozens
Your language			

Inflectional classes \approx parts of speech (POS) (4/6)

	Pronoun	Max forms	
English	inflects in inflects in	l, you, he l, we he, she	8
French	inflects in	je, tu, il tu, vous il, elle	8
Serbian	$\frac{\text { inflects in }}{\text { in }}$	inflects in	inflects in person inflects in number inflects in gender
Your language			10

Inflectional classes \approx parts of speech $($ POS $)(5 / 6)$

	Adverb	Max. forms
	uninflected yesterday	
English	OR inflects in early, earlier	3
French	uninflected hier, facilement	1
Serbian	uninflected	1
Your language		

Inflectional classes \approx parts of speech (POS) $(6 / 7)$

	Determiner	Max. forms	
English	$\underline{\text { has }}$	a, this, those, the	1
French	$\underline{\text { inflects in }}$	le, les le, la	4
Serblects in	$\underline{\text { inexistent }}$		0
Your language			

Inflectional classes \approx parts of speech (POS) $(6 / 6)$

	Preposition	Conjunction	Interjection
English	uninflected: to	uninflected: and	uninflected: hurray
French	uninflected: de	uninflected: mais	uninflected: adieu
Serbian	uninflected	uninflected	uninflected
Your language			

Inflectional paradigm (verb lemma aimer)

Word form	Features	Word form	Features	Word form	Features
aimer	W	aimais	I2s	aimais	I1s
aimait	I3s	aimions	I1p	aimiez	I2p
aimaient	I3p	aimassent	T3p	aimassiez	T2p
aimassions	T1p	aimât	T3s	aimasses	T2s
aimasse	T1s	aimai	J1s	aima	J3s
aimâmes	J1p	aimâtes	J2p	aimèrent	J3p
aimas	J2s	aimant	G	aimés	Kmp
aimé	Kms	aimées	Kfp	aimée	Kfs
aimons	Y1p	aimons	P1p	aimions	S1p
aimiez	S2p	aimerais	C2s	aimerais	C1s
aimerait	C3s	aimerions	C1p	aimeriez	C2p
aimeraient	C3p	aimerai	F1s	aimeras	F2s
aimera	F3s	aimerons	F1p	aimerez	F2p
aimeront	F3p	aime	Y2s	aime	S3s
aime	S1s	aime	P3s	aime	P1s
aiment	S3p	aiment	P3p	aimes	S2s
aimes	P2s	aimez	Y2p	aimez	P2p

Derivational morphology (1/2)

- Source word:
a lemma: small \rightarrow smallness
an inflected form (in French): normale \rightarrow normalement
- Derivational affix:
prefix: ir + regular(adj.) \rightarrow irregular
infix: e.g. in Arabic
suffix: small+ness \rightarrow smallness
no affix: to enter \rightarrow an enter
- Target word: different lexeme and/or different class (inflects differently)

```
small(adj.) }->\mathrm{ smallness(noun)
astonish(verb) }->\mathrm{ astonishment(noun)
count(verb) }->\mathrm{ countable(adj.)
courage(noun) }->\mathrm{ encourage(verb)
forest(noun) }->\mathrm{ forestry(noun)
```

- Stem modification:
regulate \rightarrow regulation
- Multiple affixes:
un + forget + able \rightarrow unforgettable

Compounding

- Several lexemes form a new lexeme.
- The new lexeme shows some degree of non-compositionality
- morphological: un peau rouge(masc.), unlike peau(fem.)
- syntactic: un moulin à vent, but not *un moulin à brise
- distributional: un cordon bleu(human), unlike cordon(inanimate)
- semantic: pomme de terre is not an apple from earth

Headword

- Headword: component from which the compound inherits its features
fireman - noun in singular like man cheval à bascules - noun in singular masculine, like cheval
- Types of compounds:
- endocentric (has a headword): fireman
- exocentric (no headword): (EN) forget-me-not, (FR) porte-serviettes
- apposition (two heads): man servant \rightarrow men-servants

Examples of compounds

	Noun	Adjective	Verb
English	air brake forget-me-not man-of-war	bittersweet easy-going as busy as a bee	cut off co-occur make up for
French	rouge-gorge stylo à bille porte-monnaie	à pied anglo-saxon sans domicile fixe	sous-entendre faire avec contre-attaquer
Your language			

Examples of compounds

	Adverb	Preposition	Conjunction
English	all of a sudden as soon as possible on and on	instead of contrary to in front of	as well as if and only if neither ...nor
French	trop bien un peu à l'envers	à propos de de façon à en cas de	alors que parce que au moment où
Your language			

Ambiguity of compounds

- Non-ambiguous compound: each occurrence of its components is always a compound.

Je suis venu parce que je le voulais.

- Ambiguous compound: an occurrence of its components may or may not be a compound.

Je suis venu alors que je ne le voulais pas.
Il m'a dit alors que l'affaire était close.

Natural language \neq formal language

- Linguistic definitions are circular (.............)
- Basic elements are not clearly defined (.............)
- Many notions are based on human intuition, and remain formally undescribed

But:

- Computer programs cannot deal with implicit knowledge
- They can only treat formal languages

Solution:

- Define a formal language as close as possible to the natural language

Natural language vs. formal language

Overlooking of exceptions

Overgeneralization

Both overgeneralization and overlooking of exceptions

What is a word? What is an alphabet?

In a formal language:

- alphabet Σ is a finite set of symbols
- a word over Σ is a (finite or infinite) sequence of elements in $\Sigma: \omega \in \Sigma^{*}$
- a language is a (finite or infinite) subset of Σ^{*} given by a grammar
Example:
- $\Sigma=\{a, b\}$
- $L=\{a, a b a, a a b a a$, aaabaaa, $\ldots\}$
- Grammar $=\ldots$

What is a word ? What is an alphabet?

In a natural language - on the morphological level

- an alphabet $=$ list of (lowercase, uppercase, accented,...) letters of the language

In English: $\{\mathrm{A}, \mathrm{a}, \mathrm{B}, \mathrm{b}, \mathrm{C}, \mathrm{c}, \ldots\}$
In French: $\{A, a, A, A, a, A ̀, a ̀, B, b, C, c, \ldots\}$
In your language:

- a language $=$ list of all correct (grammatical) words of the language

In English: $\{\mathrm{a}$, the, dog, dogs, make, making, example, ...\}
In French: $\{u n$, à, cher, chères, exemple ...\}
In your language:

- a grammar
- A set of correct word forms
- Grammar rules (over)generating sets of words

In English: NOUN \rightarrow ADJ ness
madness, emptiness, *irregularness, ...

What is a word? What is an alphabet?

In a natural language - on the syntactic level

- an alphabet $=$ list of valid morphological words

In English: \{a, the, dog, dogs, make, making, example, ...\}
In French: \{un, à, cher, chères, exemple ...\}
In your language:

- a language $=$ list of all correct (grammatical) sentences of the language:

In English: \{Dogs like cats., Do cats like dogs?, We will see example 5., ...\}
In French: \{Ces maisons sont-elles chères?, Tais-toi!, ...\}
In your language:

- a grammar

Many formalisms were proposed (DCG, TAG, ..., see lecture on syntax)
An complete and efficient grammar remains a challenge

Non-alphabet characters

- They help to separate morphological words in a sentence
- They separate sentences
- They may be parts of words (aujourd'hui)
- They may miss between words (Schul/errinnerung)
- They may have a semantic content : λ-calculus, γ-rays

The English paradox

- It is the dominating language in the Natural Language Processing (NLP) community
- It is one of the least inflected occidental languages

Computational morphology

- Tokenization $=$ dividing text into elementary graphical units (word forms, separators, ...)
- Morphological analysis = assigning all possible morphological interpretations to a word form (out of context)
- Morphological disambiguation (tagging) $=$ choosing the correct interpretation in the given context
- Morphological generation = for a given lemma and annotation, produce the corresponding word form(s)

Morphological analysis and generation

Morphological analysis: from "surface" form to an (several) annotation(s)
avions $\rightarrow\{\langle$ Lemma $=$ avion, Class $=\mathrm{N}, \mathrm{Nb}=\mathbf{p}\rangle$, \langle Lemma=avoir, Class=V, Nb=p, TM=I, Pers=1 $\rangle\}$
Morphological generation: from and annotation to a (several) surface forms
\langle Lemma=avoir, Class $=\mathbf{V}, \mathrm{Nb}=\mathbf{p}, \mathrm{TM}=\mathbf{I}$, Pers $=\mathbf{1}\rangle \rightarrow$ avions

Tokenization and morphological analysis of a sentence

He gave her a forget-me-not.

He	gave	her	a	forget	- me	not
he. $\mathrm{N}: \mathrm{s}$ he.N:p he.PRO:3ms	give. V :I1s give. V :I2s give. V :I3s give. V :I1p give. V :I2p give. V :I3p	her.DET:s her.DET:p her.PRO:3fs	a.DET:s	forget. $\mathrm{V}: \mathrm{P} 1 \mathrm{~s}$ forget. V:P2s forget.V:P1p forget.V:P2p forget.V:P3p forget. $\mathrm{V}: \mathrm{W}$		not,. A

A sentence becomes a graph

How many possible interpretations of the sentence?

Disambiguation: cutting off forbidden paths

Disambiguating rule - example: If a personal pronoun is followed by a verb, both must agree in number and person.

How many possible interpretations of the sentence were eliminated ?

Tagging $=$ choosing the correct interpretation of the

 sentence

A perfect tagging is not always possible

Truly ambiguous sentences exist:
La petite brise la glace.

[^0]: ${ }^{1}$ Master in Information Systems and Decision Support, Faculty of Computer Science, Blois

