Sécurité des Réseaux

Jean-Yves Antoine

LI - Université François Rabelais de Tours Jean-Yves. Antoine AT univ-tours. fr

Sécurité des réseaux

Codage: codes polynomiaux et cycliques

application aux réseaux informatiques

Codes polynomiaux: motivations

- Sous-classe des codes linéaires systématiques
- Codes polynomiaux standards capacité à détecter des « paquets d'erreurs » : détection et retransmission
- Codes cycliques sous-classe des codes polynomiaux aux capacités de correction intéressantes
- Implémentation aisée et efficace des opérations de codage / décodage (registres linéaires)

Polynômes dans Bⁿ

Représentation polynomiale d'un nombre binaire

Soit un mot binaire $(b_{n-1} b_{n-2} \dots b_1 b_0)$ de longueur n. On peut représenter ce nombre par un polynôme P(X) de variable X et de degré (n-1) donc les coefficients binaires sont tq :

$$P(x) = b_0 + b_1 X b_2 X^2 \dots b_{n-1} X^{n-1}$$

On note P_B l'ensemble des polynômes à coefficients binaires.

Calculs sur les polynômes à coefficients binaires

- addition, soustraction, multiplication et division euclidienne comme sur les polynômes à coefficients réels
- spécificités dues à la nature binaire des coefficients

Exemples

•
$$(1 + X + X^2) + (1 + X^2 + X^3) =$$

•
$$(1 + X + X^2) - (1 + X^2 + X^3) =$$

•
$$(1 + X).(X + X^2) =$$

Division euclidienne

Soient A et B deux polynômes à coefficients binaires. Diviser A par B revient à chercher les polynômes Q (quotient) et R (reste) de P_B tq :

Exemple

•
$$(X^3 + X) / (1 + X)$$
 Q = R =

•
$$(X^5 + X^3 + X^2) / (X^2 + X + 1)$$
 Q = R =

Théorème de la division euclidienne

Soient A et B deux polynômes de P_B . Alors il existe toujours deux polynômes de P_B Q et R (de degré inférieur à Q) qui sont le quotient de la reste de la division euclidienne de A par B et ils sont **uniques**

Diviseur — Soient A et B deux polynômes de $P_{\rm B}$. On dit que B est un diviseur de A ssi le reste de la division euclidienne de A par B est nul.

Codage polynomial

Principe

Un code polynomial de $B^m \to B^n$ est défini par un polynôme générateur G(X) de degré r = n-m. Le codage s'effectue comme suit :

- On représente le mot M à coder sous la forme d'un polynôme M(X) de degré m-1
- On multiplie M(X) par le polynôme X^r (**décalage** de r bits du mot M)
- On effectue la division euclidienne de X^r.M(X) par G(X): on obtient X^r.M(X)
 = G(X).Q(X) + R(X) avec degré R(X) ≤ r-1
- Mot transmis T de représentation polynomiale T(X) = G(X).Q(X)

Calcul pratique du mot transmis

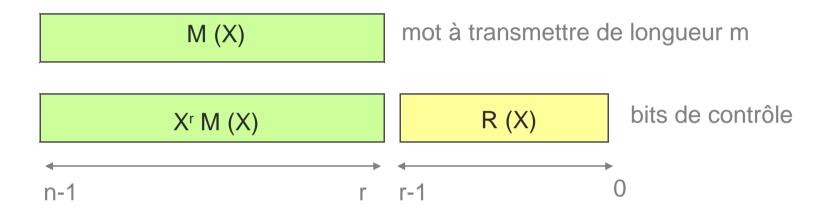
- T est obtenu directement à partir de $T(X) = G(X).Q(X) = X^r.M(X) +$
- T(X) est de degré n-1: mot transmis T de longueur n

```
Exemple G(X) = X^5 + X^2 + 1 et M = (0010 \ 1110) alors T =
```

Codage polynomial

Codes polynomiaux et codes linéaires

Tout code polynomial est un code linéaire et systématique



Mots de code

Soit un code polynomial de $B^m \to B^n$ de polynôme générateur G(X). Alors les mots de codes sont les polynômes de degré inférieur ou égal à n qui sont multiples du polynôme générateur.

Décodage

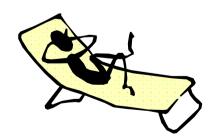
Principe

On fait la division euclidienne de la représentation polynomiale M(X) du mot reçu par le polyome générateur G(X)

- Reste nul: M(X) est un mot de code
- Reste non nul: décodage par calcul direct du syndrome

Syndrome d'un code polynomial

Le syndrome du mot M(X) est égal au reste de la division euclidienne de M(X) par le polynôme générateur



Détection des erreurs

Théorème

Soit un code polynomial de $B^m \to B^n$ de polynôme générateur G(X). Le reste de la division de tout mot reçu par G(X) est égal au reste de la division du polynôme représentant le vecteur d'erreur de transmission.

Capacités de détection des codes polynomiaux

Soit un code de polynôme générateur G(X) de degré r qui est de la forme $1 + ... + X^r$ (i.e. coefficient g_0 non nul). Alors :

- Ce code détecte toute erreur simple
- Les erreurs doubles sont toutes détectées si le polynôme générateur
 G(X) ne divise pas X^u+1 pour tout u ∈ [1, n-1]

Soit un code de polynôme générateur G(X). Tout message comportant un nombre impair d'erreur est détecté si G(X) comporte X+1 en facteur

Détection: paquets d'erreurs

Paquet d'erreurs de longueur n

Tout suite de n bits (n>1) dans lequel se trouvent plusieurs erreurs (en nombre compris entre 1 et n).

Capacités de détection de salves d'erreurs

Soit un code polynomial de polynôme générateur G(X) de degré r de la forme 1 + ... + X^r. Alors le code détecte :

- toutes les salves d'erreurs de longueur inférieure ou égale à r,
- les salves d'erreur de longueur supérieure à r sont détectée avec une probabilité très élevée.

Conclusion

Facilité de concevoir des codes de bonne capacité de détection pour un bon choix de polynômes générateurs

Polynômes normalisés

> Réseaux informatiques : CRC — Cyclic Redundancy Check

CRC-8 $G(X) = X^8 + X^2 + X + 1$ CRC-10 $G(X) = X^{10} + X^9 + X^5 + X^4 + X + 1$ CRC-12 $G(X) = X^{12} + X^{11} + X^3 + X^2 + X + 1$ CRC-16 $G(X) = X^{16} + X^{15} + X^2 + 1$ CRC-CCITT V41 $G(X) = X^{16} + X^{12} + X^5 + 1$ CRC-32 $G(X) = X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$

Efficacité — CRC-16 et CRC-CCITT détectent :

- 100% des paquets d'erreurs inférieurs ou égaux à 16
- 99,997% des erreurs de longueur égale ou supérieure à 17
- > Codes polynomiaux cycliques

Codes cycliques

Définition

Soit un code **polynomial** de $B^m \rightarrow B^n$ de polynôme générateur G(X). Le code est dit cyclique si G(X) divise X^n+1 . (ou X^{n-1})

Mots de code

Toute **permutation circulaire** d'un mot d'un **code cyclique** (polynomial ou non) est encore un mot de code

Exemples code polynomial avec $G(X) = X^4 + X + 1$

Longueur du code	Mots de code	Code cyclique ?		
N = 6	Pas de permutation			
N = 15	Permutation circulaire	X		

Codes cycliques

Codes cycliques à polynômes irréductibles primitifs

• On appelle **période** ou **ordre d'un polynôme** G(X) le plus petit entier u tel que G(X) divise X^u+1.

Exemple: un code polynomial cyclique a une période au moins égale à la longueur du code

- Un polynôme G(X) est dit irréductible s'il ne possède aucun diviseur (autre que lui-même) de degré supérieur à zéro
- Si un polynôme de degré r est irréductible, sa période divise 2^r-1. Lorsque sa période est égale à 2^r-1, on parle de **polynôme primitif**

Capacités de correction

Un code cyclique dont le polynôme générateur est primitif est capable de **corriger** toutes les erreurs simples.

Codes cycliques

Conception d'un code cyclique

On prend tous les divisieurs de Xn+1 et on cherche un polynôme qui a des propriétés intéressantes

Exemple: polynômes irréductibles primitifs

•
$$N=2$$
 $P(X) = X^2 + X + 1$

•
$$N=3$$
 $P(X) = X^3 + X + 1$

•
$$N=4$$
 $P(X) = X^4 + X + 1$

• N= 5
$$P(X) = X^5 + X^2 + 1$$

•
$$N=6$$
 $P(X) = X^6 + X + 1$

•
$$N=7$$
 $P(X) = X^7 + X + 1$

• N= 8
$$P(X) = X^8 + X^6 + X^5 + X^4 + 1$$

• N= 9
$$P(X) = X^9 + X^4 + 1$$

• N= 10
$$P(X) = X^{10} + X^3 + 1$$

• N= 11
$$P(X) = X^{11} + X^2 + 1$$

• N= 12
$$P(X) = X^{12} + X^7 + X^4 + X^3 + 1$$

Codes cycliques: exemples

Code de Golay

- $G_{12}(X) = 1 + X^2 + X^4 + X^5 + X^6 + X^{10} + X^{11}$
- Distance 8 : corrige tous les erreurs indépendantes simples, doubles ou triples

Codes BCH (Bose, Chaudhuri, Hocquenghem)

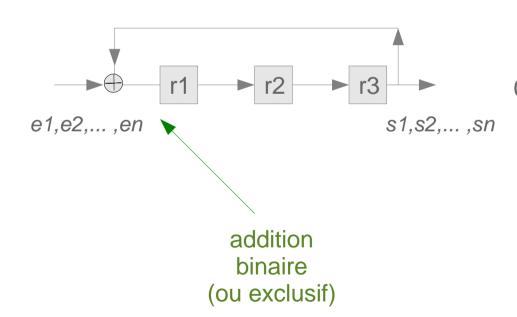
- Généralisation des codes de Hamming
- Permet de définir un code en définissant a priori sa longueur et sa distance

Codes de Reed-Salomon

- Code de base des codes de correction de paquets d'erreurs
- CD-audio

Registres linéaires

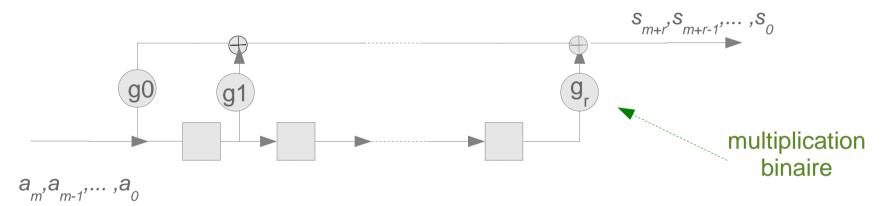
<u>entrée</u>	<u>r1</u>	r2	<u>r3</u>	<u>sortie</u>
0001 1	0	0	0	0
0001	1	0	0	00
000	1	1	0	000
00	0	1	1	1000
0	0	0	1	11000



<u>entrée</u>	<u>r1</u>	r2	<u>r3</u>	sortie
0000011	0	0	0	0
000001	1	0	0	00
00000	1	1	0 -	000
0000	0	1	1	0000
000	0	0	1	10000
00	1	0	0	110000
0	1	1	0	0110000
	0	1	1	00110000

Multiplication polynômiale

Multiplication de polynômes de la forme $A(X) = a_0 + a_1 X + ... + a_m X^m$ par un polynôme constant $G(X) = g_0 + g_1 X + ... + g_r X^r$



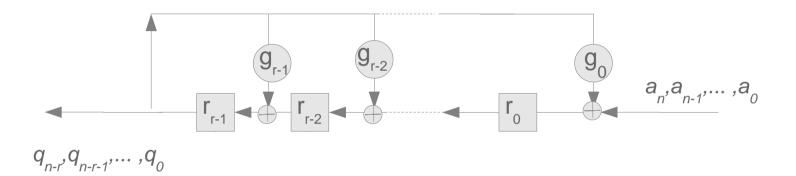
$$A(X) = 1 + X + X^2$$
 et $G(X) = X + X^2$

Codage

Les mots de codes d'un code polynomial sont les multiples du polynôme générateur G(X) de degré inférieur à la longueur du code : multiples par un polynome A(X) de degré strictrement inférieur à m

Division polynômiale

Multiplication de polynômes de la forme $A(X) = a_0 + a_1 X + ... + a_n X^n$ par un polynôme constant $G(X) = g_0 + g_1 X + ... + g_r X^r$ avec $g_r = 1$



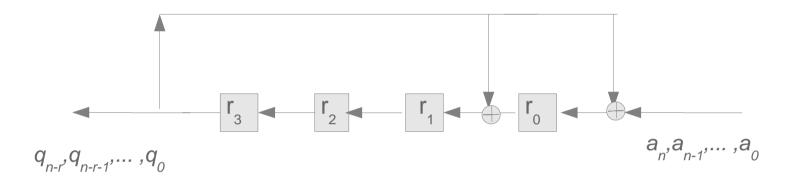
Une fois que l'entrée à complètement été transmise au registre :

• Reste
$$R(X) = r_0 + ... + r_{r-1} X^{r-1}$$
 (contenu des registres)

• Quotient
$$Q(X) = q_0 + ... + q_{n-r} X^{n-r}$$
 (sortie)

Division polynômiale: exemple

$$A(X) = X^8 + X^5$$
 divisé par $G(X) = X^4 + X + 1$



<u>sortie</u>	<u>r3</u>	<u>r2</u>	<u>r1</u>	r0	<u>entrée</u>
	0	0	0	0	100100000
0	0	0	0	1	00100000
00	0	0	1	0	0100000

000010001 0 0 1 1

$$Q(X) = X^4 + 1$$
 $R(X) = X + 1$

$$R(X) = X + 1$$