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Abstract

Within Information Extraction tasks,
Named Entity Recognition has received
much attention over latest decades. From
symbolic / knowledge-based to data-driven
/ machine-learning systems, many ap-
proaches have been experimented. Our
work may be viewed as an attempt to
bridge the gap from the data-driven per-
spective back to the knowledge-based one.
We use a knowledge-based system, based
on manually implemented transducers,
that reaches satisfactory performances. It
has the undisputable advantage of being
modular. However, such a hand-crafted
system requires substantial efforts to
cope with dedicated tasks. In this con-
text, we implemented a pattern extractor
that extracts symbolic knowledge, using
hierarchical sequential pattern mining
over annotated corpora. To assess the
accuracy of mined patterns, we designed a
module that recognizes Named Entities in
texts by determining their most probable
boundaries. Instead of considering Named
Entity Recognition as a labeling task, it
relies on complex context-aware features
provided by lower-level systems and
considers the tagging task as a markovian
process. Using thos systems, coupling
knowledge-based system with extracted
patterns is straightforward and leads to a
competitive hybrid NE-tagger. We report
experiments using this system and compare
it to other hybridization strategies along
with a baseline CRF model.

1 Introduction

Named Entity Recognition (NER) is an informa-
tion extraction (IE) task that aims at extracting

and categorizing specific entities (proper names
or dedicated linguistic units as time expressions,
amounts, etc.) in texts. These texts can be pro-
duced in diverse conditions. In particular, they
may correspond to either electronic written doc-
uments (Marsh & Perzanowski, 1998) or more
recently speech transcripts provided by a human
expert or an automatic speech recognition (ASR)
system (Galliano et al., 2009). The recognized en-
tities may later be used by higher-level tasks for
different purposes such as Information Retrieval
or Open-Domain Question-Answering (Voorhees
& Harman, 2000).

While NER is often considered as quite a sim-
ple task, there is still room for improvement when
it is confronted to difficult contexts. For instance,
NER systems may have to cope with noisy data
such as word sequences containing speech recog-
nition errors in ASR. In addition, NER is no more
circumscribed to proper names, but may also in-
volve common nouns (e.g., “the judge”) or com-
plex multi-word expressions (e.g. “the Com-
puter Science department of the New York Uni-
versity”). These complementary needs for robust
and detailed processing explain that knowledge-
based and data-driven approaches remain equally
competitive on NER tasks as shown by numerous
evaluation campaigns. For instance, the French-
speaking Ester2 evaluation campaign on radio
broadcasts (Galliano et al., 2009) has shown that
knowledge-based approaches outperformed data-
driven ones on manual transcriptions while a sys-
tem based on Conditional Random Fields (CRFs,
participant LIA) is ranked first on noisy ASR tran-
scripts. This is why the development of hybrid
systems has been investigated by the NER com-
munity.



In this paper, we present a strategy of hy-
bridization benefiting from features produced by
a knowledge-based system (CasEN) and a data-
driven pattern extractor (mineXtract). CasEN
has been manually implemented based on finite-
state transducers. Such a hand-crafted system
requires substantial efforts to be adapted to ded-
icated tasks. We developed mineXtract, a text-
mining system that automatically extracts infor-
mative rules, based on hierarchical sequential pat-
tern mining. Both implement processings that are
context-aware and use lexicons. Finally, to rec-
ognize NEs, we propose mStruct, a light multi-
purpose automatic annotator, parameterized using
logistic regression over available features. It takes
into account features provided by lower-level sys-
tems and annotation scheme constraints to output
a valid annotation maximizing likelihood. Our ex-
periments show that the resulting hybrid system
outperforms standalone systems and reaches per-
formances comparable to a baseline hybrid CRF
system. We consider this as a step forward to-
wards a tighter integration of knowledge-based
and data-driven approaches for NER.

The paper is organized as follows. Section 2
describes the context of this work and reviews
related work. Section 3 describes CasEN, the
knowledge-based NE-tagger. Section 4 details the
process of extracting patterns from annotated data
as informative rules. We then introduce the au-
tomatic annotator mStruct in Section 5. Section 6
describes how to gather features from systems and
present diverse hybridization strategies. Corpora,
metrics used and evaluation results are reported in
Section 7. We conclude in Section 8.

2 Context and Related Work

2.1 Ester2 Evaluation Campaign

This paper focuses on NER in the context of
the Ester2 evaluation campaign (Galliano et al.,
2009). This campaign assesses system’s perfor-
mance for IE tasks over ASR outputs and manual
transcriptions of radio broadcast news (see details
in Section 7). The annotation guidelines speci-
fied 7 kinds of entities to be detected and cate-
gorized: persons (‘pers’), organizations (‘org’),
locations (‘loc’), amounts (‘amount’), time ex-
pressions (‘time’), functions (‘func’), products
(‘prod’). Technically, the annotation scheme is
quite simple: only one annotation per entity, al-

D
Sent. Tokens and NEs
s1 <pers> Isaac Newton </pers> was admitted in

<time> June 1661 </time> to <org> Cambridge
</org>.

s2 <time> In 1696 </time>, he moved to <loc> Lon-
don </loc> as <func> warden of the Royal Mint
</func>.

s3 He was buried in <loc> Westminster Abbey </loc>.

Table 1: Sentences from an annotated corpus

most no nesting (except for persons collocated
with their function: both should be embedded in
an encompassing ‘pers’ NE).

We illustrate the annotation scheme using a
running example. Table 1 presents the expected
annotation in the context of Ester2 from “Isaac
Newton was admitted in June 1661 to Cam-
bridge. In 1696, he moved to London as warden
of the Royal Mint. He was buried in Westmin-
ster Abbey.”. This example illustrates frequent
problems for NER task. Determining the extent
of a NE may be difficult. For instance, NER
should consider here either “Westminster” (city)
or “Westminster Abbey” (church, building). Cat-
egorizing NEs is confronted to words ambiguities,
for instance “Cambridge” may be considered as a
city (‘loc’) or a university (‘org’). In addition, oral
transcripts may contain disfluencies, repetitions,
hesitations, speech recognition errors: overall dif-
ficulty is significantly increased. For these rea-
sons, NER over such noisy data is a challenging
task.

2.2 State of the Art
Knowledge-based approaches Most of the
symbolic systems rely on shallow parsing tech-
niques, applying regular expressions or linguistic
patterns over Part-Of-Speech (POS), in addition
to proper name lists checking. Some of them han-
dle a deep syntactic analysis which has proven
its ability to reach outstanding levels of perfor-
mances (Brun & Hagège, 2004; Brun & Hagège,
2009; van Shooten et al., 2009).

Data-driven approaches A large diversity of
data-driven approaches have been proposed dur-
ing the last decade for NER. Generative models
such as Hidden Markov Models or stochastic fi-
nite state transducers (Miller et al., 1998; Favre et
al., 2005) benefit from their ability to take into
account the sequential nature of language. On
the other hand, discriminative classifiers such as



Support Vector Machines (SVMs) are very effec-
tive when a large variety of features (Isozaki &
Kazawa, 2002) is used, but lack the ability to
take a global decision over an entire sentence.
Context Random Fields (CRFs) (Lafferty et al.,
2001) have enabled NER to benefit from the ad-
vantages of both generative and discriminative ap-
proaches (McCallum & Li, 2003; Zidouni et al.,
2010; Béchet & Charton, 2010). Besides, the
robustness of data-driven / machine-learning ap-
proaches explains that the latter are more appro-
priate on noisy data such as ASR transcripts.

Hybrid systems Considering the complemen-
tary behaviors of knowledge-based and data-
driven systems for NER, projects have been con-
ducted to investigate how to conciliate both ap-
proaches. Work has been done to automatically
induce symbolic knowledge (Hingston, 2002;
Kushmerick et al., 1997) that may be used as
NE taggers. But in most cases, hybridization for
NER relies a much simpler principle: outputs of
knowledge-based systems are considered as fea-
tures by a machine learning algorithm. For in-
stance, maximum entropy may be used when a
high diversity of knowledge sources are to be
taken into account (Borthwick et al., 1998). CRFs
also have demonstrated their ability to merge
symbolic and statistic processes in a machine
learning framework (Zidouni et al., 2010).

We propose an approach to combine
knowledge-based and data-driven approaches in
a modular way. Our first concern is to implement
a module that automatically extracts knowledge
that should be interoperable with the existing
system’s transducers. This is done by focusing, in
annotated corpora, more on ‘markers’ (tags) that
are to be inserted between tokens (e.g. <pers>,
</pers>, <org>, </org>, etc.), than on
‘labels’ assigned to each token, as transducer
do. By doing so, we expect to establish a better
grounding for hybriding manually implemented
and automatically extracted patterns. Afterwards,
another module is responsible of annotating
NEs by using those context-aware patterns and
standard machine-learning techniques.

3 CasEN: a knowledge-based system

The knowledge-based system is based on CasSys
(Friburger & Maurel, 2004), a finite-state cascade
system that implements processings on texts at di-

verse levels (morphology, lexicon, chunking). It
may be used for various IE tasks, or simply to
transform or prepare a text for further processings.
The principle of this finite-state processor is to
first consider islands of certainty (Abney, 2011),
so as to give priority to most confident rules. Each
transducer describes local patterns corresponding
to NEs or interesting linguistic units available to
subsequent transducers within the cascade.

Casen is the set of NE recognition transduc-
ers. It was initially designed to process written
texts, taking into account diverse linguistic clues,
proper noun lists (covering a broad range of first
names, countries, cities, etc.) and lexical evi-
dences (expressions that may trigger recognition
of a named entity).

Figure 1: A transducer recognizing person names

Figure 2: Transducer ‘patternFirstName’

As an illustration, Figure 1 presents a very sim-
ple transducer tagging person names made of an
optional title, a first name and a surname. The
boxes contain the transitions of the transducer as
items to be matched for recognizing a person’s
name. Grayed boxes contain inclusions of other
transducers (e.g. box ‘patternFirstName’ in Fig-
ure 1 is to be replaced by the transducer depicted
in Figure 2). Other boxes can contain lists of
words or diverse tags (e.g. <N+firstname>
for a word tagged as first name by lexicon). The
outputs of transducers are displayed below boxes
(e.g. ’{’ and ’,.entity+pers+hum}’ in Figure 1).

For instance, that transducer matches the
word sequence ‘Isaac Newton’ and outputs:
‘{{Isaac ,.firstname} {Newton ,.surname} ,.en-
tity+pers+hum}’. By applying multiple transduc-



ers on a text sequence, CasEN can provide sev-
eral (possibly nested) annotations on a NE and
its components. This has the advantage of pro-
viding detailed information about CasEN internal
processings for NER.

Finally, the processing of examples in Table 1
leads to annotations such as:

• { { June ,.month} { 1661 ,.year} ,en-
tity+time+date+rel}

• { Westminster ,.entity+loc+city}
{ Abbey ,buildingName} ,.en-
tity+loc+buildingCityName }

In standalone mode, post-processing steps con-
vert outputs into Ester2 annotation scheme (e.g.
<pers> Isaac Newton </pers>).

Experiments conducted on newspaper docu-
ments for recognizing persons, organizations and
locations on an extract of the Le Monde corpus
have shown that CasEN reaches 93.2% of recall
and 91.1% of f-score (Friburger, 2002). Dur-
ing the Ester2 evaluation campaign, CasEN (“LI
Tours” participant in (Galliano et al., 2009)) ob-
tained 33.7% SER (Slot Error Rate, see section
about metrics description) and a f-score of 75%.
This may be considered as satisfying when one
knows the lack of adaptation of Casen to speci-
ficities of oral transcribed texts.

4 mineXtract: Pattern Mining Method

4.1 Enriching an Annotated Corpus

We investigate the use of data mining techniques
in order to supplement our knowledge-based sys-
tem. To this end, we use an annotated corpus to
mine patterns related to NEs. Sentences are con-
sidered as sequences of items (this precludes ex-
traction of patterns accross sentences). An item is
either a word from natural language (e.g. “admit-
ted”, “Newton”) or a tag delimiting NE categories
(e.g., <pers>, </pers> or <loc>). The an-
notated corpus D is a multiset of sequences.

Preprocessing steps enrich the corpus by (1) us-
ing lexical resources (lists of toponyms, anthro-
ponyms and so on) and (2) lemmatizing and ap-
plying a POS tagger. This results in a multi-
dimensional corpus where a token may gradually
be generalized to its lemma, POS or lexical cate-
gory. Figure 3 illustrates this process on the words
sequence ‘moved to <loc> London </loc>’.

move

VER

moved

PRP

to

<loc> PN

CITY

</loc>

Figure 3: Multi-dimensional representation of the
phrase ‘moved to <loc> London </loc>’

The first preprocessing step consists in consid-
ering lexical resources to assign tokens to lexi-
cal categories (e.g., CITY for “London”) when-
ever possible. Note that those resources contain
multi-word expressions. Figure 4 provides a short
extract limited to tokens of Table 1) of lexical
ressources (totalizing 201,057 entries). This as-
signment should be ambiguous. For instance, pro-
cessing “Westminster Abbey” would lead to cat-
egorizing ‘Westminster’ as CITY and the whole
as INST.

Afterwards, a POS tagger based on TreeTag-
ger (Schmid, 1994) distinguishes common nouns
(NN) from proper names (PN). Besides, token is
deleted (only PN category is kept) to avoid extrac-
tion of patterns that would be specific to a given
proper name (on Figure 3, “London” is removed).
Figure 5 shows how POS, tokens and lemmas are
organized as a hierarchy.

Category Tokens
ANTHRO Newton, Royal . . .
CITY Cambridge, London, Westminster . . .
INST Cambridge, Royal Mint, Westminster Abbey . . .
METRIC Newton . . .

. . . . . .

Figure 4: Lexical Ressources

in of to

PRP

admit

admitted

be

was

bury

buried

VER

Figure 5: Items Hierarchy

4.2 Discovering Informative Rules
We mine this large enriched annotated corpus to
find generalized patterns correlated to NE mark-
ers. It consists in exhaustively enumerating all the
contiguous patterns mixing words, POS and cat-



egories. This provides a very broad spectrum of
patterns, diversely accurate to recognize NEs. As
an illustration, if you consider the words sequence
“moved to <loc> London </loc>” in Figure 3
leads to examining patterns as:

• ‘ VER PRP <loc> PN </loc>’

• ‘ VER to <loc> PN </loc>’

• ‘ moved PRP <loc> CITY </loc>’

The most relevant patterns will be filtered by
considering two thresholds which are usual in
data mining: support and confidence (Agrawal
& Srikant, 1994). The support of a pattern P
is its number of occurrences in D, denoted by
supp(P,D). The greater the support of P , the
more general the pattern P . As we are only inter-
ested in patterns sufficiently correlated to mark-
ers, a transduction rule R is defined as a pattern
containing at least one marker. To estimate em-
pirically how much R is accurate to detect mark-
ers, we calculate its confidence. A dedicated func-
tion suppNoMark(R,D) returns the support of
R when markers are omitted both in the rule and
in the data. The confidence of R is:

conf(R,D) = supp(R,D)
suppNoMark(R,D)

For instance, consider the rule R = ‘ VER PRP
<loc>’ in Table 1. Its support is 2 (sentences
s2 and s3). But its support without considering
markers is 3, since sentence s1 matches the rule
when markers are not taken in consideration. The
confidence of R is 2/3.

In practice, the whole collection of transduc-
tion rules exceeding minimal support and con-
fidence thresholds remains too large, especially
when searching for less frequent patterns. Conse-
quently, we filter-out “redundant rules”: those for
which a more specific rule exists with same sup-
port (both cover same examples in corpus). For
instance, the rules R1 = ‘ VER VER in <loc>’
and R2 = ‘ VER in <loc>’ are more general
and have same support than R3 = ‘ was VER
in <loc>’: we only retain the latter.

The system mineXtract implements those pro-
cessing using a level-wise algorithm (Mannila &
Toivonen, 1997).

5 mStruct: Stochastic Model for NER

We have established a common ground for the
systems to interact with a higher level model.
Our assumption is that lower level systems ex-
amine the input (sentences) and provide valu-
able clues playing a key role in the recognition
of NEs. In that context, the annotator is im-
plemented as an abstracted view of sentences.
Decisions will only have to be taken whenever
one of the lower-level systems provides infor-
mation. Formally, beginning or ending a NE
at a given position i may be viewed as the af-
fectation of a random variable P (Mi = mji)
where the value of mji is one of the markers
({∅,<pers>,</pers>,<loc>,<org>, . . . }).

For a given sentence, we use binary features
triggered by lower-level systems at a given posi-
tion (see section 6.1) for predicting what marker
would be the most probable at that very position.
This may be viewed as an instance of a classifi-
cation problem (more precisely multilabel clas-
sification since several markers may appear at a
single position, but we won’t enter into that level
of detail due to lack of space). Empirical exper-
iments with diverse machine learning algorithms
using Scikit-learn (Pedregosa et al., 2011) lead us
to consider logistic regression as the most effec-
tive on the considered task.

Considering those probabilities, it is now pos-
sible to estimate the likelihood of a given annota-
tion over a sentence. Here, markers are assumed
to be independent. With this approximation, the
likehood of an annotation is computed by a sim-
ple product:

P (M1 = mj1 ,M2 = mj2 , . . . ,Mn = mjn)

≈
∏

i=1...n

P (Mi = mji)

As an illustration, Figure 6 details the compu-
tation of an annotation given the probability of ev-
ery markers, using the Ester2 annotation scheme.
For clarity purposes, only sufficiently probable
markers (including ∅) are displayed at each po-
sition. A possible <func> is discarded (crossed
out), being less probable than a previous one. An
annotation solution <org> . . .</org> is evalu-
ated, but is less likely (0.3 ∗ 0.4 ∗ 0.9 ∗ 0.4 ∗ 0.4 ∗
0.1 = 0.0017) than warden of the Royal Mint as a
function (0.6∗0.4∗0.9∗0.3∗0.5∗0.4 = 0.0129)



which will be retained (and is the expected anno-
tation).

as

PRP

∅ 0.3

<func> 0.6

warden

NN

JOB

∅ 0.4

</func> 0.5

of

PRP

∅ 0.9

the

DET

∅ 0.3

<org> 0.2

<pers> 0.4

Royal

NP

INST

∅ 0.5

</pers> 0.4

Mint

NP

INST

∅ 0.1

</func> 0.4

<org> 0.4

Figure 6: Stochastic Annotation of a Sequence

Estimating markers probabilities allows the
model to combine evidences from separate
knowledge sources when recognizing starting or
ending boundaries. For instance, CasEN may re-
congize intermediary structures but not the whole
entity (e.g. when unexpected words appear inside
it) while extracted rules may propose markers that
are not necessarily paired. The separate detection
of markers enables the system to recognize named
entities without modeling all their tokens. This
may be useful when NER has to face noisy data
or speech disfluences.

Finally, it is not necessary to compute likeli-
hoods over all possible combination of markers,
since the annotation scheme is much constrained.
As the sentence is processed, some annotation so-
lutions are to be discarded. It is straightforward
to see that this problem may be resolved using
dynamic programming, as did Borthwick et al.
(1998). Depending on the annotation scheme,
constraints are provided to the annotator which
outputs an annotation for a given sentence that
is valid and that maximizes likelihood. Our sys-
tem mStruct (micro-Structure) implements this
(potentially multi-purpose) automatic annotation
process as a separate module.

6 Hybriding systems

6.1 Gathering Clues from Systems

Figure 7 describes the diverse resources and algo-
rithms that are plugged together. The knowledge-
based system uses lists that recognize lexical pat-
terns useful for NER (e.g. proper names, but also
automata to detect time expressions, functions,

etc.). Those resources are exported and available
to the data mining software as lexical resources
(see section 4) and (as binary features) to the base-
line CRF model.

Lists

Mining
Corpus mineXtract

Transducers CasEN

Learning
Corpus

Hybridation

Gather
Features

mStruct

Figure 7: Systems Modules (Hybrid data flow)

Each system processes input text and provides
features used by the Stochastic Model mStruct. It
is quite simple to take in consideration mined in-
formative rules: each time a rule i proposes its
jth marker, a Boolean feature Mij is activated.
What is provided by CasEN is more sophisticated,
since each transducer is able to indicate more de-
tailed information (see section 3), as multiple fea-
tures separated by ‘+’ (e.g. ‘entity+pers+hum’).
We want to benefit as much as possible from this
richness: whenever a CasEN tag begins or ends,
we activate a boolean feature for each mentioned
feature plus one for each prefixes of features (e.g.
‘entity’, ‘pers’, ‘hum’ but also ‘entity.pers’ and
‘entity.pers.hum’).

6.2 Coupling Strategies

We report results for the following hybridizations
and CRF-based system using Wapiti (Lavergne et
al., 2010).

• CasEN: knowledge-based system standalone

• mXS: mineXtract extracts, mStruct annotates

• Hybrid: gather features from CasEN and mineX-
tract, mStruct annotates

• Hybrid-sel: as Hybrid, but features are selected

• CasEN-mXS-mine: as mXS, but text is pre-
processed by CasEN (adding a higher general-
ization level above lexical lists)

• mXS-CasEN-vote: as mXS, plus a post-
processing step as a majority vote based on mXS
and CasEN outputs

• CRF: baseline CRF, using BIO and common fea-
tures (unigrams: lemma and lexical lists, bi-
grams: previous, current and next POS)



Corpus Tokens Sentences NEs
Ester2-Train 1 269 138 44 211 80 227
Ester2-Dev 73 375 2 491 5 326

Ester2-Test-corr 39 704 1 300 2 798
Ester2-Test-held 47 446 1 683 3 067

Table 2: Characteristics of Corpora

• CasEN-CRF: same as CRF, but the output of
CasEN is added as a single feature (concatena-
tion of CasEN features)

7 Experimentations

7.1 Corpora and Metrics

For experimentations, we use the corpus that has
been made available after the Ester2 evaluation
campaign. Table 2 gives statistics on diverse sub-
parts of this corpus. Unfortunately, many incon-
sistencies where noted for manual annotation, es-
pecially for ‘Ester2-Train’ part that won’t be used
for training.

There were fewer irregularities in other parts of
the corpus. Although, manual corrections were
done on half of the Test corpus (Nouvel et al.,
2010) (Ester2-Test-corr in Table 2), to obtain a
gold standard that we will use to evaluate our ap-
proach. The remaining part of the Test corpus
(Ester2-Test-held in Table 2) merged with the Dev
part constitute our training set (Ester2-Dev in Ta-
ble 2), used as well to extract rules with mineX-
tract, to estimate stochastic model probabilities of
mStruct and to learn CRF models.

We evaluate systems using following metrics:

• detect: rate of detection of the presence of
any marker (binary decision) at any position

• desamb: f-score of markers when comparing
N actual markers to N most probable mark-
ers, computed over positions where k mark-
ers are expected (N=k) or the most probable
marker is not ∅ (N=1)

• precision, recall, f-score: evaluation of NER
by categories by examining labels assigned
to tokens (similarly to Ester2 results)

• SER (Slot Error Rate): weighted error rate of
NER (official Ester2 performance metric, to
be lowered), where errors are discounted per
entity as Galliano et al. (2009) (deletion and
insertion errors are weighted 1 whereas type
and boundary errors, 0.5)

System support confidence detect disamb f-score SER
CasEN ∅ ∅ ∅ ∅ 78 30.8

mXS 5 0.1 97 73 76 28.4
5 0.5 96 71 74 31.2
15 0.1 96 72 73 30.1

Hybrid 5 0.1 97 78 79 26.3
5 0.5 97 77 77 28.3
15 0.1 97 78 76 28.2
inf inf 96 71 70 42.0

Table 3: Performance of Systems

7.2 Comparing Hybridation with Systems
First, we separately evaluate systems. While
CasEN is not to be parameterized, mineXtract
has to be given minimum frequency and support
thresholds. Table 3 shows results for each sys-
tem separately and for the combination of sys-
tems. Results obtained by mXS show that even
less confident rules are improving performances.
Generally speaking, the detect score is very high,
but this mainly due to the fact that the ∅ case is
very frequent. The disamb score is much corre-
lated to the SER. This reflects the fact that the
challenge is for mStruct to determine the correct
markers to insert.

Comparing systems shows that the hybridiza-
tion strategy is competitive. The knowledge-
based system yields to satisfying results. mXS
obtains slightly better SER and the hybrid sys-
tem outperforms both in most cases. Considering
SER, the only exception to this is the ‘inf’ line
(mStruct uses only CasEN features) where perfor-
mances are degraded. We note that mStruct ob-
tains better results as more rules are extracted.

7.3 Assessing Hybridation Strategies

amount func loc org pers time all
10

20

30

40

50

CasEN
mXS

Hybrid
Hybrid-sel

Figure 8: SER of Systems by NE types



System precision recall f-score SER
Hybrid-sel 83.1 74.8 79 25.2

CasEN-mXS-mine 76.8 75.5 76 29.4
mXS-CasEN-vote 78.7 79.0 79 26.9

CRF 83.8 77.3 80 26.1
CasEN-CRF 84.1 77.5 81 26.0

Table 4: Comparing performances of systems

In a second step, we look in detail what NE
types are the most accurately recognized. Those
results are reported in Figure 8, where is depicted
the error rates (to be lowered) for main types
(‘prod’, being rare, is not reported). This revealed
that features provided by CasEN for ‘loc’ type ap-
peared to be unreliable for mStruct. Therefore, we
filtered-out related features, so as to couple sys-
tems in a more efficient fashion. This leads to a
1.1 SER gain (from 26.3 to 25.2) when running
the so-called ‘Hybrid-sel’ system, and demon-
strates that the hybridation is very sensitive to
what is provided by CasEN.

With this constrained hybridization, we com-
pare previous results to other hybridization strate-
gies and a baseline CRF system as described in
section 6. Those experiments are reported in Ta-
ble 4. We see that, when considering SER, the hy-
bridization strategy using CasEN features within
mStruct stochastic model slightly outperforms
‘simpler’ hybridizations schemes (pre-processing
or post-processing with CasEN) and the CRF
model (even when it uses CasEN preprocessing
as a single unigram feature).

However the f-score metric gives advantage
to CasEN-CRF, especially when considering re-
call. By looking indepth into errors and when re-
minded that SER is a weighted metric based on
slots (entities) while f-score is based on tokens
(see section 7.1), we noted that on longest NEs
(mainly ‘func’), Hybrid-sel does type errors (dis-
counted as 0.5 in SER) while CasEN-CRF does
deletion errors (1 in SER). This is pointed out by
Table 5. The influence of error’s type is clear
when considering the SER for ‘func’ type for
which Hybrid-sel is better while f-score doesn’t
measure such a difference.

7.4 Discussion and Perspectives
Assessment of performances using a baseline
CRF pre-processed by CasEN and the hybrided
strategy system shows that our approach is com-
petitive, but do not allow to draw definitive con-

System NE type insert delet type SER f-score
Hybrid-sel func 8 21 7 40.3 65

all 103 205 210 25.2 79
CasEN-CRF func 9 37 0 53.5 64

all 77 251 196 26.0 81

Table 5: Impact of ‘func’ over SER and f-score

clusions. We keep in mind that the evaluated CRF
could be further improved. Other methods have
been successfully experimented to couple more
efficiently that kind of data-driven approach with
a knowledge-based one (for instance Zidouni et
al. (2010) reports 20.3% SER on Ester2 test cor-
pus, but they leverage training corpus).

Nevertheless, the CRFs models do not allow
to directly extract symbolic knowledge from data.
We aim at organizing our NER system in a mod-
ular way, so as to be able to adapt it to dedicated
tasks, even if no training data is available. Results
show that this proposed hybridization reaches a
satisfactory level of performances.

This kind of hybridization, focusing on “mark-
ers”, is especially relevant for annotation tasks.
As a next step, experiments are to be conducted
on other tasks, especially those involving nested
annotations that our current system is able to pro-
cess. We will also consider how to better organize
and integrate automatically extracted informative
rules into our existing knowledge-based system.

8 Conclusion

In this paper, we consider Named Entity Recog-
nition task as the ability to detect boundaries of
Named Entities. We use CasEN, a knowledge-
based system based on transducers, and mineX-
tract, a text-mining approach, to extract informa-
tive rules from annotated texts. To test these rules,
we propose mStruct, a light multi-purpose annota-
tor that has the originality to focus on boundaries
of Named Entities (“markers”), without consider-
ing the labels associated to tokens. The extraction
module and the stochastic model are plugged to-
gether, resulting in mXS, a NE-tagger that gives
satisfactory results. Those systems altogether
may be hybridized in an efficient fashion. We as-
sess performances of our approach by reporting
results of our system compared to other baseline
hybridization strategies and CRF systems.
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